Photodegradation of Rhodamine B in Water by ETS-10 Prepared through a Novel Titanium Source

Article Preview

Abstract:

Well-crystallized ETS-10 was prepared using TiO2 prepared by industrial propane/air turbulent flame CVD process as a novel titanium source. The synthesis parameters have been studied in detail The photodegradation of a dye solution, rhodamine B (RhB), assisted by ETS-10 was studied. The result showed that the well-crystallized titanosilicate ETS-10 induced complete degradation of RhB in water after 2h illumination under a 300W high-pressure mercury lamp.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

533-537

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Penpolcharoen, R. Amal, M. J. Brungs: Nanopart. Res. Vol. 3 (2001), p.289.

Google Scholar

[2] M. Burgos, M. Langlet: J. Sol–Gel Sci. Technol. Vol. 16 (1999), p.267.

Google Scholar

[3] N. Daneshvar, D. Salari: J. Photochem. Photobiol. A: Chem. Vol. 157 (2003), p.111.

Google Scholar

[4] T. X. Wu, G. M. Liu, H. Hidaka, N. Serpone: J. Phys. Chem. B Vol. 102 (1998), p.5845.

Google Scholar

[5] F. L. Zhang, T. Shen, H. Hidaka, N. Serpone: J. Mol. Catal. A: Chem. Vol. 120 (1997), p.173.

Google Scholar

[6] E. Borello, C. Lamberti, S. Bordiga, C. O. Arean: Appl. Phys. Lett. Vol. 71 (1997), p.2319.

Google Scholar

[7] P. Calza, C. Pazé, E. Pelizzetti, A. Zecchina: Chem. Commun. (2001), p.2130.

Google Scholar

[8] S. Uma, I.N. Martyanov, K.J. Klabunde: Micropor. Mesopor. Mater. Vol. 67 (2004), p.181.

Google Scholar

[9] M. J. Nash, S. Rykov, R. F. Lobo, I. Wachs: J. Phys. Chem. C Vol. 111 (2007), p.7029.

Google Scholar

[10] G. Guan, T. Kida, K. Kimura, A. Yoshida: Appl. Catal. A: Gen. Vol. 295 (2005), p.71.

Google Scholar

[11] P. Atienzar, S. Valencia, A. Corma, H. García: Chem. Phys. Chem. Vol. 8 (2007), p.1115.

Google Scholar

[12] F.X. Xamena, P. Calza, C. Lamberti, C. Prestipino, A. Damin, S. Bordiga, E. Pelizzetti, A. Zecchina: J. Am. Chem. Soc. Vol. 125 (2003), p.2264.

DOI: 10.1021/ja027382o

Google Scholar

[13] Y. Shiraishi, D. Tsukamoto, T. Hirai: Langmuir Vol. 24 (2008), p.12569.

Google Scholar

[14] S.M. Kuznicki, U.S. Patent 4, 853, 202. (1989).

Google Scholar

[15] C. C. Pavel, D. Vuono, L. Catanzaro, P. De Luca, N. Bilba, A. Nastro: Micropor. Mesopor. Mater. Vol. 56 (2002), p.227.

DOI: 10.1016/s1387-1811(02)00489-4

Google Scholar

[16] X. Yang, J.L. Paillaud, H. F. W. J. van Breukelen, H. Kessler, E. Duprey: Micropor. Mesopor. Mater. Vol. 46, (2001), p.1.

Google Scholar

[17] X. Liu, J.K. Thomas: Chem. Commun., (1996), p.1435.

Google Scholar

[18] J. Rocha, A. Ferreira, Z. Lin, M. Anderson: Micropor. Mesopor. Mater. Vol. 23, (1998), p.253.

Google Scholar

[19] L. L. F. Su, X. S. Zhao: J. Porous. Mater. Vol. 13, (2006), p.263.

Google Scholar

[20] S. H. Noh, Y. J. Chung, J. W. Park, D. K. Moon, D. T. Hayhurst: Micropor. Mesopor. Mater. Vol. 88, (2006), p.197.

Google Scholar

[21] H. Y. Xie, G. L. Gao, Z. Tian: Particuology Vol. 7, (2009), P. 204.

Google Scholar

[22] D. M. Chapman, A. L. Roe: Zeolites Vol. 10, (1990), P. 730.

Google Scholar

[23] T. Watanabe, T. Takizawa, K. Honda: J. Phys. Chem. Vol. 81, (1977), P. 1845.

Google Scholar

[24] W. J. Kim, H. S. Jung, D. T. Hayhurst: Micropor. Mesopor. Mater. Vol. 56, (2002), P. 89.

Google Scholar