Influence of Anodization Parameters on the Growth Rate and Morphology of the TiO2 Nanotube Arrays

Article Preview

Abstract:

Titanium dioxide (TiO2) nanotubes (TN) are an ideal nano-structured materials due to its promising applications in various scientific areas. Highly ordered TN arrays (TNAs) fabricated by electrochemical anodization proved to one of the exciting achievements during the past decades. In this paper, we did a series of experiments to investigate the influence of anodization parameters on the growth rate and morphology of the TNAs. And the results suggested that the anodization voltage, as well as the concentration of the anodization electrolyte, had a significant impact on the morphology of the TNAs. In-depth discussion for the TNAs was also presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-11

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes. Nano Lett. 6 (2006) 215-218.

Google Scholar

[2] H. D. Jiang, S. K. Kim, S. J. Kim. J Nanopart Res, 3(2001) 141–147.

Google Scholar

[3] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, C. A. Grimes. Sensors and Actuators B 93 (2003) 338–344.

DOI: 10.1016/s0925-4005(03)00222-3

Google Scholar

[4] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey, C. A. Grimes. Adv. Mater. 15 (2003) 624-627.

DOI: 10.1002/adma.200304586

Google Scholar

[5] R. Rodriguez, K. Kim, J.L. Ong, J. Biomed. Mater. Res. A 65 (2003) 352-357.

Google Scholar

[6] L. Peng, A. D. Mendelsohn, T. J. LaTempa, S. Yoriya, C. A. Grimes, T. A. Desai. Nano Lett. 9 (2009) 1932-(1936).

DOI: 10.1021/nl9001052

Google Scholar

[7] L. Peng, A. J. Barczak, R. A. Barbeau, Y. Xiao, T. J. LaTempa, C. A. Grimes, T. A. Desai. Nano Lett. 10 (2010) 143-148.

DOI: 10.1021/nl903043z

Google Scholar

[8] X. Chen, S. S. Mao, Chem. Rev. 107 (2007) 2891-2959.

Google Scholar

[9] G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes. Sol. Energy Mater. Sol. Cells 90 (2006) 2011-(2075).

Google Scholar

[10] K. Shankar, J. I. Basham, N. K. Allam, O. K. Varghese, G. K. Mor, X. Feng, M. Paulose, J. A. Seabold, K-S. Choi, C. A. Grimes. J. Phys. Chem. C 113 (2009) 6327-6359.

DOI: 10.1021/jp809385x

Google Scholar

[11] Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, J. W. Chin. J. Electrochem. Soc. 153 (2006) D123-D127.

Google Scholar

[12] Q. Cai, L. Yang, Y. Yu. Thin Solid Films 515 (2006) 1802-1806.

Google Scholar

[13] X. Chen, M. Schriver, T. Suen, S. S. Mao. Thin Solid Films 515 (2007) 8511-8514.

DOI: 10.1016/j.tsf.2007.03.110

Google Scholar

[14] D. Wang, B. Yu, C. Wang, F. Zhou, W. Liu. Adv. Mater. 21 (2009) 1964-(1967).

Google Scholar

[15] D. Wang, Y. Liu, B. Yu, F. Zhou, W. Liu. Chem. Mater. 21 (2009) 1198-1206.

Google Scholar

[16] J. M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem. Int. Ed. 44 (2005) 2100-2102.

Google Scholar

[17] J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Angew. Chem. Int. Ed. 44 (2005) 7463-7465.

DOI: 10.1002/anie.200502781

Google Scholar