p.489
p.493
p.497
p.501
p.505
p.509
p.513
p.517
p.521
Improved Photoelectrode of Dye-Sensitized Solar Cell Using a ZnO/Zn2TiO4
Abstract:
Zinc titanate nanostructures were prepared by oxidation reaction technique. Here Zn mixed with 0, 10, 20 and 30 mol% of TiO2 powder was screened on alumina and FTO substrate, and then sintered at 400–600°C for 12 h under normal atmosphere. Through a detailed field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD) indicated that the nanostructures exhibited belt-like shapes of Zn2TiO4 phase. Moreover, the belt-like nanostructures of the synthesized Zn2TiO4 were studied in terms of optical properties by the UV-vis spectroscopy (UV-vis) to obtain band gap energy (Eg). The results showed that the Eg gap energy ranged from 3.57 eV to 3.63 eV as the mol% of TiO2 increased. In addition to the characterization of the nanobelts, the synthesized Zn2TiO4 nanostructures were applied as a bilayer semiconductor electrode in ZnO-based dye-sensitized solar cell (DSSC). It was shown that the use of Zn2TiO4 nanostructure with 10 mol% TiO2 in the ZnO/Zn2TiO4 electrode components of the DSSC revealed the highest obtainable efficiency.
Info:
Periodical:
Pages:
505-508
Citation:
Online since:
July 2011
Price:
Сopyright:
© 2011 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: