Developing Polypyrrole-Based Oligonucleotide Biosensors

Article Preview

Abstract:

Many medical, forensic science, environmental and general scientific difficulties may be aided by the existence of suitable biosensors such as gene sensors, body fluid detection DNA sensors, disease detection DNA sensors etc. The sensor technology described here uses the conducting polymer polypyrrole (PPy) as both sensing element and transducer of sensing events. Stability and reproducibility are necessary characteristics of practical biosensors. The stability of polymers can be investigated using electrical impedance spectroscopy (EIS). This work discusses research focused towards creating a stable, reproducible sensor surface for oligonucleotide detection. The effect of electropolymerisation conditions (electropolymerisation method, solvent and electrolyte used), post-growth treatment (cycling and EIS experiments), and the sensing-environment conditions on sensor stability and applicability will be discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-218

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Garnier, B. Bouabdallaoui, P. Srivastava, B. Mandrand, C. Chaix, Sensors and Actuators B: Chemical 2007, 123, 13

DOI: 10.1016/j.snb.2006.07.015

Google Scholar

[2] H. Peng, C. Soeller, N. A. Vigar, V. Caprio, J. Travas-Sejdic, Biosensors and Bioelectronics 2007, 22, 1868

DOI: 10.1016/j.bios.2006.07.010

Google Scholar

[3] H. Peng, C. Soeller, J. Travas-Sejdic, Macromolecules 2007, 40, 909

Google Scholar

[4] W. Chen, Z. Lu, C. Li, Anal. Chem 2008, 80, 8485.

Google Scholar

[5] R. Fleming, S. Harbison, Forensic Science International: Genetics 2009.

Google Scholar

[6] D. Kaplin, S. Qutubuddin, Journal of the Electrochemical Society 1993, 140, 3185.

Google Scholar

[7] M. González Tejera, M. De Plaza, E. Sánchez La Blanca, I. Hernández Fuentes, Polymer International 1993, 31, 45.

DOI: 10.1002/pi.4990310108

Google Scholar

[8] J. Lee, F. Serna, J. Nickels, C. Schmidt, Biomacromolecules 2006, 7, 1692.

Google Scholar

[9] W. Schuhmann, Microchimica Acta 1995, 121, 1.

Google Scholar

[10] A. Bogomolova, E. Komarova, K. Reber, T. Gerasimov, O. Yavuz, S. Bhatt, M. Aldissi, Analytical Chemistry 2009, 81, 3944

DOI: 10.1021/ac9002358

Google Scholar

[11] F. Beck, U. Barsch, R. Michaelis, Journal of Electroanalytical Chemistry 1993, 351, 169.

Google Scholar

[12] H. Yamato, M. Ohwa, W. Wernet, Journal of Electroanalytical Chemistry 1995, 397, 163.

Google Scholar

[13] M. Pyo, J. Reynolds, L. Warren, H. Marcy, Synthetic Metals 1994, 68, 71

Google Scholar

[14] A. Emamgholizadeh, M. Khoshroo, A. Omrani, A. Rostami, Journal of Applied Polymer Science 2010, 117, 3107.

Google Scholar

[15] J. Spires, H. Peng, D. Williams, C. Soeller, J. Travas-Sejdic, Electrochimica Acta 2010, 55, 3061.

DOI: 10.1016/j.electacta.2010.01.019

Google Scholar