Prediction of the Plastic Anisotropy of Rolled Sheets under a Combined Effect of Texture, Grain Shape and Grain Size

Article Preview

Abstract:

The present study explores a way to improve predictions of the mechanical anisotropy of textured polycrystalline aggregates. The underlying hypothesis is that grain-shape-dependent backstresses developed during the elastic-plastic transition influence the selection of active slip systems inside individual grains. Recently, a model was developed and applied successfully to electro-deposited pure iron with a columnar grain structure \cite{Delannay2011}. In the present study, we first suggest another definition of the boundary separation distance experienced by individual slip systems. Then, the model is adapted from the case of spheroidal grains, considered initially, to the more general situation of ellipsoidal grains. A combined effect of grain size, grain shape and texture on plastic anisotropy at yielding is illustrated in case of a rolled IF steel sheet.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Pages:

182-187

Citation:

Online since:

December 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation: