Progress of Recrystallisation in Cold Rolled Austenitic Stainless Steel during Cyclic Thermal Process

Article Preview

Abstract:

The present study aims to understand the evolution of microstructure leading to nano/ultrafine grain formation during cyclic thermal process. A commercial grade of AISI 304L austenitic SS was cold rolled which resulted in a creation of a dual microstructure having strain induced martensite (43%) and heavily deformed retained austenite. The dual phase microstructure was subjected to cyclic thermal annealing process at 825 °C. The events occurring in; a) retained austenite and b) reverted austenite formed by phase reversion of strain induced martensite, during annealing treatment, were studied by the Electron backscattered diffraction (EBSD). The study revealed recrystallisation process of the two austenite grains, which resulted into ultrafine grain formation during cyclic thermal process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Pages:

627-630

Citation:

Online since:

December 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Z. Valiev, Ann. Chim. Fr. 21, (1996) 269 – 78.

Google Scholar

[2] R. Z. Valiev, Proc. of the NATO ARW on Investigation and Applications of Severe Plastic Deformation: NATO Sci. Series, T. C. Lowe and R. Z. Valiev (Eds.), Kluwer Pub., Moscow, Russia, 2000, p.80.

Google Scholar

[3] D. Jia, Y.M. Wang, K.T.Y. Ramesh, E. Ma, Y.T. Zhu, R.Z. Valiev, Appl Phys Lett.79 (2001), 611-13.

Google Scholar

[4] M. Gao, C.N. Reid, M. Jahedi and Y. Li, J. Mater. Engg. and Perfm.: 9 (2000) 62-71.

Google Scholar

[5] R.D.K. Misra, B. Ravi Kumar, M. Somani, P. Karjalainen, Scripta Mater. 59 (2008) 79-82.

Google Scholar

[6] K. Tomimura, S. Takaki and Y. Tokunaga, ISIJ Intl. 31 (1991)1431- 37.

Google Scholar

[7] O. Kwon, Y.K. Lee, J Korean Inst Metals Mater. 32 (1994) 958-64.

Google Scholar

[8] K. Tomimira, S. Takaki, S. Tanimoto and Y. Tokunaga, ISIJ Intl. 31 (1991) 721-27.

Google Scholar

[9] S. Takaki, K. Tomimura and S. Ueda, ISIJ Intl. 34 (1994) 522-27.

Google Scholar

[10] D.L. Johannsen, A. Kyrolainen and P.J. Ferreira, Metall. Trans. A 37 (2006) 2325-38.

Google Scholar

[11] A. Di Schino, M. Barteri, J.M. Kenny, Jr. Mater. Sci. Lett. 21 (2002) 751-53.

Google Scholar

[12] H.Hu Trans, AIME. 224 (1962) 75-82.

Google Scholar

[14] H. Fujita, J. Phy. Soc. Japan 16 (1961) 397-406.

Google Scholar

[15] R.A. Oriani, Acta Met. 8 (1960) 134- 35.

Google Scholar

[16] H. Luo, J Sietsma and S. Van Der Zwaag, Metall. Trans. A 35 (2004) 1889 - 98.

Google Scholar

[17] M. Fiset, M. Braunovic and A. Galibois, Scripta Mater. 5 (1971) 325-328.

Google Scholar

[18] S.F. Nielsen, S. Schmidt, E.M. Lauridsen, H. Yiu, J. Savoie, M. Zeng, D. Juul Jensen, Script Mater. 48 (2003) 513-18.

DOI: 10.1016/s1359-6462(02)00499-2

Google Scholar