Study on Diffusion Processes of Water and Proton in PEM Using Molecular Dynamics Simulation

Article Preview

Abstract:

In this paper a molecular dynamics calculation model for the Nafion 117 membrane is constructed by Materials Studio (MS) software platform to study its micro-structure and transport properties. Based on the calculation model, cell structures of different water content of Nafion 117 membrane are obtained and the predicted density values of simulated cell are in good agreement with experimental data. Meanwhile, the diffusion processes of water molecules and hydrogen ions in the membrane are studied, respectively. The predicted diffusion coefficients of both water molecules and hydrogen ions increase with the water content, which agrees well with the variation trend of experimental data. The reasons for the deviation between numerical results and the experiment values in literature are analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 704-705)

Pages:

1266-1272

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.A. Elliott, S. Hanna, A. M. S. Elliott and G. E. Cooley: J. Phys. Chem. Vol. 1 (1999), pp.48-55.

Google Scholar

[2] S. L. Mayo, B. D. Olafson, W. A. Goddard: J. Phys. Chem. Vol. 94 (1990), p.8897.

Google Scholar

[3] A. Vishnyakov, A. V. Neimark: J. Phys. Chem. B Vol. 105 (2001), p.9586.

Google Scholar

[4] S. Urata, J. Irisawa, A. Takada, W. Shinoda, S. Tsuzuki and M. Mikami: J. Phys. Chem. B Vol. 10 (2005), p.4269.

Google Scholar

[5] S. S. Jang, V. Molinero, T. Ca_gun and W. A. Goodard: J. Phys. Chem. B Vol. 108 (2004), p.3149.

Google Scholar

[6] A. Venkatnathan, R. Devanathan and D. Michel: J. Phys. Chem. B Vol. 111 (2007), pp.7234-7244.

Google Scholar

[7] I. H. Hristov, S. J. Paddison and R. Paul: J. Phys. Chem. B Vol. 112 (2008), pp.2937-2949.

Google Scholar

[8] S. T. Cui, J.W. Liu, E. S. Myvizhi, J. P. Stephen, J. K. David and J. E. Brian: J. Phys. Chem. B Vol. 112 (2008), pp.13273-13284.

Google Scholar

[9] Y. K. Choe, E. Tsuchida, T. Ikeshoji, S. Yamakawa and S. Hyodo: J. Phys. Chem. B Vol. 112 (2008), pp.11586-11594.

Google Scholar

[10] M. Vittadello, E. Negro, S. Lavina, G. Pace, A. Safari, and V. D. Noto: J. Phys. Chem. B Vol. 112 (2008), pp.16590-16600.

DOI: 10.1021/jp804117w

Google Scholar

[11] N. Hara, H. Ohashi, T. Ito and T. Yamaguchi: J. Phys. Chem. B Vol. 113 (2009), pp.4656-63.

Google Scholar

[12] S. G. Charati, S. A. Stern: Macromolecules Vol. 31 (1998), pp.5529-5538.

Google Scholar

[13] D. Hofmann, L. Fritz, J. Ulbrich, C. Schepers and M. Boehning: Macromol. Theory Simul. Vol. 9 (2000), pp.293-327.

Google Scholar

[14] A. Inc, Discover tutorials, Materials Studio. Version, 4. 4 (2008).

Google Scholar

[15] D. Rigby, H. Sun and B.E. Eichinger: Polym. Int. Vol. 44 (1998), pp.311-330.

Google Scholar

[16] D.R. Morris, X. Sun: J. App: Polym. Sci. Vol. 50 (1993), p.1445.

Google Scholar

[17] T.A. Zawodzinski, M. Neeman, L.O. Sillerud and S. Gottesfeld: J. Phys. Chem. Vol. 95 (1991), p.6040.

Google Scholar

[18] J.C. Perrin, S. Lyonnard and F. Volino: J. Phys. Chem. C Vol. 111 (2007), p.3393.

Google Scholar