The Morphology and Evolution of Cu6Sn5 at the Interface of Sn-2.5Ag-0.7Cu-0.1RE/Cu Solder Joint during the Isothermal Aging

Article Preview

Abstract:

The morphology and growing behavior of Cu6Sn5 intermetallic compound (IMC) of low Ag content Sn-2.5Ag-0.7Cu-0.1RE/Cu solder joint interface are investigated by adopting the X-ray diffraction, JSM-5610LV scanning electronic microscope and energy spectrum analysis. The results show that the cross-section morphology Cu6Sn5 of the solder joint interface is scallop-like and its section morphology is circle-like grain. With the aging time increasing, the cross-section Cu6Sn5 morphology of the solder joint interface can be changed from the scallop-like to the shape-layer, and the growing kinetics is coincidence with the law of parabola and its growing behavior is controlled by diffusion. With adding a small amount of rare earth elements in the Sn-2.5Ag-0.7Cu solder alloy, the growing rate of the Cu6Sn5 can be reduced.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 704-705)

Pages:

685-689

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.K. Zhang, Y.L. Wang, Y.L. Fan, et al. rare metal materials engineering, Vol. 36(2007), p.1473.

Google Scholar

[2] H. Hao, Y.W. Shi, Z.D. Xia, et al. Acta metallurgica sinica, Vol. 45(2009), p.199.

Google Scholar

[3] P. L. Tu, Y.C. Chan, K. C. Hung, et al. Scripta Material , Vol. 44 (2001), p.317.

Google Scholar

[4] J. Tian, H. Hao, Y.W. Shi, et al. Mater. Sci. Technol., Vol. 16(2008), p.281.

Google Scholar

[5] K.K. Zhang, S.Q. Wang, Y.C. Yu. Trans. Nonferrous Met. Soc. China, Vol. (16)2006, p. (1908).

Google Scholar

[6] C.M.T. Law, D.Q. Yu, L. Wang, et al.J. of Electro. Mater., Vol. 35(2006), p.89.

Google Scholar

[7] Suganuma K: Welding technology of lead-free solder. (Science press, Beijing 2004).

Google Scholar

[8] R.S. Dwayne, R.G. Hamid, K.S. Jan. Microelectronics Reliability, Vol. 48(2008), p.455.

Google Scholar

[9] J.C. Gong C.H. Liu, P.C. Paul. Scripta Materialia, Vol. 60(2009), p.333.

Google Scholar

[10] N. Zhao, H. T Ma, L. Wang. Rare metal materials engineering, Vol. 38(2009), p.107.

Google Scholar

[11] J.W. Yoon, S. B. Jung. J. Mater. Sci., Vol. 39(2004), p.421.

Google Scholar

[12] K.K. Zhang, Y.L. Wang, Y.L. Fan, et al. Key Eng. Mater., Vol. 353(2007), p.2912.

Google Scholar

[13] K.S. Kim, S.H. Huh, K. Suganuma. Journal of Alloys and Compounds, Vol. 352(2003), p.226.

Google Scholar

[14] P. Yao, P. Liu, J. Liu. Microelectronic Engineering. Vol. 86(2009), p. (1969).

Google Scholar