Effects of High Magnetic Field Heat Treatment on the Microstructure of Fe-0.76%C Alloy

Article Preview

Abstract:

The present studies are to investigate the microstructure features during transformation from austenite to ferrite without and with magnetic field on Fe-0.76%C alloy. It is found that the area fraction and numbers of proeutectoid ferrite grain as well as the lamellar spacing of pearlite in Fe-0.76%C alloy increased considerably with the increase of magnetic field intensity. The reason is that, the magnetic field increases the driving force of proeutectoid ferrite nuclei and shifts the eutectoid point to the side of high carbon content and high temperature, which increases the starting-temperature of the transformation from austenite to ferrite. The proeutectoid ferrite grains are elongated along the magnetic field direction, which can be explained as follows: the proeutectoid ferrite becomes the magnetic dipolar under high magnetic field, and then the polarized austenite atoms are much easier to diffuse into ferrite grains along the magnetic field direction. Key words: high magnetic field; Fe-0.76%C alloy; microstructure

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 704-705)

Pages:

863-869

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.N. Pustovoit, Y.M. Dombrovskii and S.A. Grishin: Met Sci Heat Treat Vol. 21 (1979), P. 838.

Google Scholar

[2] Y. Xu, H. Ohtsuka and H. Wada: CAMP-ISIJ Vol. 12 (1999), P. 601.

Google Scholar

[3] Y. Xu, H. Ohtsuka and H. Wada:J. Mag. Soc. Jpn. Vol. 24 (2000), p.655.

Google Scholar

[4] M. Enomoto, H. Guo, Y. Tazuke and Y.R. Abe: Metall. Mater. Trans. Vol. 32 (2001), p.445.

Google Scholar

[5] X. J. Hao, H. Ohtsuka, and H. Wada: Mater. Trans. Vol. 44 (2003), p.2523.

Google Scholar

[6] X. J. Hao, H. Ohtsuka, and H. Wada: J. Jan. Inst. Metals. Vol. 69 (2005), p.368.

Google Scholar

[7] S. Rivoirard, F. Gaucherand, E. Beaugnon, O. Bouaziz, and E. Pinto Da Costa: La Revue de Metallurgle-CIT, Mal (2005), p.393.

DOI: 10.1051/metal:2005124

Google Scholar

[8] K. Maruta and M. Shimotomai: Mater. Trans. JIM Vol. 41 (2000), p.902.

Google Scholar

[9] H. Ohtsuka, Y. Xu, and H. Wada: Mater trans JIM Vol. 41 (2000), p.907.

Google Scholar

[10] M. Shimotomai, K. Maruta, K. Mine and M. Matsui: Acta Mater. Vol. 51 (2003), p.2921.

Google Scholar

[11] M. Shimotomai and K. Maruta: Scripta Mater. Vol. 42(5) (2000), pp.499-503.

Google Scholar

[12] K. Maruta, and M. Shimotomai: J. Cryst. Growth Vol. 237-239 (2002), p.802.

Google Scholar

[13] Y.D. Zhang, C. Esling, M.L. Gong, G. Vincent, X. Zhao and L. Zuo: Scripta Mater. Vol. 54 (2006), p.1897.

Google Scholar

[14] Y.D. Zhang, C. Esling, M. Calcagnotto, M.L. Gong, X. Zhao and L. Zuo: J. Physics D: Appl. Phys. Vol. 40 (2007), p.6501.

Google Scholar

[15] T. Kakeshita, K. Shimizu, S. Funada, and M. Date: Acta Metall. Vol. 33 (1985), p.1381.

Google Scholar

[16] J.K. Choi, H. Ohtsuka, Xu Y, and W.Y. Choo: Scripta Mater. Vol. 43 (2000), p.221.

Google Scholar

[17] H.D. Joo, S.U. Kim, N.S. Shin, and Y.M. Koo: Mater. Lett. Vol. 43 (2000), p.225.

Google Scholar

[18] H. Guo, and M. Enomoto. Mater: Trans. JIM Vol. 41 (2000), p.911.

Google Scholar

[19] Y.D. Zhang, C.S. He, X. Zhao, Y.D. Wang, L. Zuo and C. Esling: Solid State Phenom. Vol. 105 (2005), p.187.

Google Scholar

[20] Y.D. Zhang, C. Esling, J. Muller, C.S. He, X. Zhao, and L. Zuo: Appl. Phys. Lett. Vol. 87 (2005), pp.212504-1.

Google Scholar