Effect of Microstructure on Transmission Properties of Polycrystalline Transparent Ceramics

Article Preview

Abstract:

The transmission properties of polycrystalline transparent ceramics are influenced by the chemical composition and the microstructure of the material. The fundamental optical mechanism of transparent ceramics and the influencing factors on transmission properties were discussed in this paper. The Mie theory for light scattering is applied to calculate scattering coefficients of residual pores and optical birefringence. The in-line transmission curves of the transparent alumina were calculated as a function of pore size, porosity and grain size. The results show that scattering by the residual pores is the dominant influencing factors on transmission properties. The scattering by the residual pores increases with an increase in porosity and the maximum of the scattering was observed when the pore size close to the optical wavelength. Optical birefringence in the transparent ceramics with non-cubic crystal structure has an important effect on the in-line transmission. The in-line transmission increases with a decrease in grain size. Keywords: transparent ceramics; microstructure; light scattering; birefringence

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 704-705)

Pages:

842-846

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. L. Coble: Transparent Alumina and Method of Preparation. US Patent 3026210. (1962).

Google Scholar

[2] Y. Aman, V. Garnier and E. Djurado: J. Eur. Ceram. Soc. Vol. 29 (2009), p.3363.

Google Scholar

[3] K. Tsukuma: J. Ceram. Soc. Japan Vol. 114 (2006), p.802.

Google Scholar

[4] R. Chaim, M. Kalina and J. Z. Shen: J. Eur. Ceram. Soc. Vol. 27 (2007) p.3331.

Google Scholar

[5] J. M. Xue, Q. Liu and L. H. Gui: J. Am. Ceram. Soc. Vol. 90(2007), p.1623.

Google Scholar

[6] H-Yagi, T . Yanagitani, T. Numazawa and K. Ueda: Ceram. Int. Vol. 33 (2007), p.711.

Google Scholar

[7] Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu and J. Xu: J. Am. Ceram. Soc. Vol. 90, (2007), p.3334.

Google Scholar

[8] J. G. Li, T . Ikegami, J. H. Lee, T. Mori and Y. Yajima: J. Eur. Ceram. Soc. Vol. 20 (2002), p.2395.

Google Scholar

[9] N. Orlovskaya, M. Lugovy and V. Subbotin: J. Mater. Sci. Vol. 40 (2005), p.5483.

Google Scholar

[10] A. Ikesue, K. Yoshida, T. Yamamoto and I. Yamaga: J. Am. Ceram. Soc. Vol. 80 (1997), p.1517.

Google Scholar

[11] R. Apetz and M.P.B. van Bruggen: J. Am. Ceram. Soc. Vol. 86 (2003), p.480.

Google Scholar

[12] I. Yamashita, H. Nagayama and K. Tsukuma: J. Am. Ceram. Soc. Vol. 91 (2008), p.2611.

Google Scholar

[13] C. F. Bohren and D. R. Huffman: Absorption and Scattering of Light by small Particles (Wiely, New York 1983).

Google Scholar

[14] H.C. Van De Hulst: Light scattering by small- particle (Wiely, New York 1957).

Google Scholar

[15] M. Kerker: The Scatteing of Light and Other Electromagnetic Radiation (Academic Press, New York 1969).

Google Scholar

[16] Y. T. Oa, J. B. Koo, K. J. Hong, J. S. Park and D. C. Shin: Mater. Sci. Eng. A Vol. 374 (2004), p.191.

Google Scholar