First Principles Investigation of Interaction of Oxygen with Low Index Surfaces of γ-TiAl

Article Preview

Abstract:

A first principles study of adsorption of oxygen atom on surfaces of γ-TiAl was performed to investigate the intrinsic mechanism dominated the adsorption behaviours. First surface stability was evaluated. It was shown that the (100) surface is the most stable surface followed by (111), (110), and (001) surfaces. Then adsorption of oxygen on the (100) and the (111) surfaces was studied. Oxygen atom prefers the Ti-rich environment and has high potential to generate TiO2. Competition between the O-Al bonding and the O-Ti bonding was observed. However, the O-Ti interaction dominates the adsorption behaviours in all considered systems. A linear relationship between adsorption energy and integration of orbital overlaps of O and metals was observed, which indicates that the electronic structure controls adsorption behaviours of oxygen on surfaces of γ-TiAl and provides a guidance to improve the oxidation resistance of γ-TiAl based alloys.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1106-1114

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Wu: Intermetallics Vol. 14 (2006), p.1114.

Google Scholar

[2] M. Yoshihara and Y. -W. Kim: Intermetallics Vol. 13 (2005), p.952.

Google Scholar

[3] F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Müllauer, M. Oehring, and J. D. H. Paul: Adv. Eng. Mater. Vol. 2 (2000), p.699.

DOI: 10.1002/1527-2648(200011)2:11<699::aid-adem699>3.0.co;2-j

Google Scholar

[4] A. Rahmel, W. J. Quadakkers, and M. Schütze: Mater. Corros. Vol. 46 (1995), p.217.

Google Scholar

[5] S. Becker, A. Rahmel, W. Quadakkers, and M. Schütze: Oxid. Met. Vol. 38 (1992), p.425.

Google Scholar

[6] C. Lang and M. Schütze: Oxid. Met. Vol. 46 (1996), p.255.

Google Scholar

[7] C. Lang and M. Schütze: Mater. Corros. Vol. 48 (1997), p.13.

Google Scholar

[8] M. Schmitz-Niederau and M. Schütze: Oxid. Met. Vol. 52 (1999), p.225.

Google Scholar

[9] M. Mitoraj, E. Godlewska, O. Heintz, N. Geoffroy, S. Fontana, and S. Chevalier: Intermetallics Vol. 19 (2011), p.39.

DOI: 10.1016/j.intermet.2010.09.006

Google Scholar

[10] T. T. Cheng, M. R. Willis, and I. P. Jones: Intermetallics Vol. 7 (1999), p.89.

Google Scholar

[11] Y. Shen, X. F. Ding, and F. G. Wang: J. Mater. Sci. Vol. 39 (2004), p.6583.

Google Scholar

[12] B. G. Kim, G. M. Kim, and C. J. Kim: Script Metall Mater Vol. 33 (1995), p.1117.

Google Scholar

[13] Y. Wu, K. Hagihara, and Y. Umakoshi: Intermetallics Vol. 13 (2005), p.879.

Google Scholar

[14] J. Małecka, W. Grzesik, and A. Hernas: Corros Sci. Vol. 52 (2010), p.263.

Google Scholar

[15] M. R. Shanabarger: Mat. Sci. Eng. A Vol. 153 (1992), p.608.

Google Scholar

[16] T. N. Taylor and M. T. Paffett: Mat. Sci. Eng. A Vol. 153 (1992), p.584.

Google Scholar

[17] J. Geng, G. Gantner, P. Oelhafen, and P. K. Datta: Appl. Surf. Sci. Vol. 158 (2000), p.64.

Google Scholar

[18] M. Schmiedgen, P. C. L. Graat, B. Baretsky, and E. J. Mittemeijer: Thin Sol. Films Vol. 415 (2002), p.114.

Google Scholar

[19] V. Maurice, G. Despert, S. Zanna, P. Josso, M. -P. Bacos, and P. Marcus: Surf. Sci. Vol. 596 (2005), p.61.

Google Scholar

[20] M. R. Shanabarger: Appl. Surf. Sci. Vol. 134 (1998), p.176.

Google Scholar

[21] V. Maurice, G. Despert, S. Zanna, P. Josso, M. -P. Bacos, and P. Marcus: Nature Mater. Vol. 3 (2004), p.687.

Google Scholar

[22] V. Maurice, G. Despert, S. Zanna, P. Josso, M. -P. Bacos, and P. Marcus: Acta Mater. Vol. 55 (2007), p.3315.

DOI: 10.1016/j.actamat.2007.01.030

Google Scholar

[23] H. Li, M. Liu, S. Q. Wang, and H. Q. Ye: Aca Metall. Sin. Vol. 42 (2006), p.897.

Google Scholar

[24] S. -Y. Liu, J. -X. Shang, F. -H. Wang, and Y. Zhang: Phys. Rev. B Vol. 79 (2009), p.075419.

Google Scholar

[25] G. Kresse and J. Hafner: Phys. Rev. B. Vol. 47 (1993), p.558.

Google Scholar

[26] G. Kresse and J. Furthmüler: Phys. Rev. B. Vol. 54 (1996), p.11169.

Google Scholar

[27] P. E. Blöchl: Phys. Rev. B. Vol. 50 (1994), p.17953.

Google Scholar

[28] G. Kresse and J. Furthmüler: Comp. Mater. Sci. Vol. 6 (1996), p.15.

Google Scholar

[29] H. R. Gong: Intermetallics Vol. 17 (2009), p.562.

Google Scholar

[30] J. Neugebauer and M. Scheffler: Phys. Rev. B Vol. 46 (1992), p.16067.

Google Scholar

[31] L. Bengtsson: Phys. Rev. B Vol. 59 (1999), p.12301.

Google Scholar

[32] P. Błoński, A. Kiejna, and J. Hafner: Surf. Sci. Vol. 590 (2005).

Google Scholar