High Temperature Deformation and Associated 3D Characterisation of Damage in Magnesium Alloys

Article Preview

Abstract:

A way to overcome the low deformability of magnesium alloys at room temperature is toincrease the temperature of forming operations. The stress exponent n, which is known to be a keyparameter in the control of plastic stability, generally decreases when temperature increases.Nevertheless, low n-values are not enough to ensure large capacity of deformation since fracturecan also result from strain induced cavitation. In the present investigation, both the mechanisms ofhigh temperature deformation and damage were studied in selected Mg alloys. Since damage datacan also give information on the deformation mechanisms, the strain induce cavitation behaviourwas mainly studied thanks to X-ray micro tomography which provides 3D information like thecavity shapes or the variation with strain of the number of cavities. Moreover, additionally toconventional post mortem analyses, it was attempted to perform the 3D damage characterisation inin situ conditions, namely directly during high temperature deformation tests.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1128-1133

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.M. Taleff, W.P. Green, M.A. Kulas, T.R. McNelley, P.E. Krajewski, Mater. Sc. Eng., vol. A410-411 (2005) p.32.

Google Scholar

[2] H. Watanabe, H. Tsutsui, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi, Intern. J. Plast., vol. 17 (2001) p.387.

Google Scholar

[3] E.M. Taleff., P.J. Nevland, P.E. Krajewski, Metall. Mater. Trans., 32A (2001) p.1119.

Google Scholar

[4] M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, T.R. McNelley, Metall. Mater. Trans., 36A (2005) p.1249.

Google Scholar

[5] M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, T.R. McNelley, Metall. Mater. Trans., 37A (2006) p.645.

Google Scholar

[6] T.R. McNelley, K. Oh-ishi, A.P. Zhilyaev, S. Swaminathan, P.E. Krajewski, E.M. Taleff., Metall. Mater. Trans., 39A (2008) p.50.

DOI: 10.1007/s11661-007-9401-5

Google Scholar

[7] J.C. Tan, M.J. Tan, Mater. Sc. Eng., vol. A339 (2003) 81.

Google Scholar

[8] R. Boissière, J.J. Blandin, 7th International Conference on Magnesium Alloys and their Applications (6-9 Nov. 2006, Dresden), 6-9 Nov. 2006 (Dresden, D), Ed. K.U. Kainer, Wiley Publisher, DGM, p.393.

Google Scholar

[9] J.J. Blandin, Mater. Sc. Forum, 551-552 (2007) p.211.

Google Scholar

[10] C.F. Martin, C. Josserond, L. Salvo, J.J. Blandin, P. Cloetens, E. Boller, Scripta Mater., vol. 42 (2000) p.375.

DOI: 10.1016/s1359-6462(99)00355-3

Google Scholar

[11] L. Salvo, P. Cloetens, E. Maire, S. Zabler, J.J. Blandin, J.Y. Buffière, W. Ludwig, E. Boller, D. Bellet, C. Josserond, Nuclear Inst. Meth. Phys. Res. B, 200 (2003) p.273.

DOI: 10.1016/s0168-583x(02)01689-0

Google Scholar

[12] A. Mussi, J.J. Blandin, L. Salvo, E.F. Rauch, Acta Mater., vol. 54 (2006) p.3801.

Google Scholar

[13] H.Q. Yu, J.J. Blandin, L. Salvo, Mater. Sc. Forum, vol. 447-448 (2003) p.55.

Google Scholar