Microstructure Evolution of AS21 Magnesium Alloy via the SIMA Process

Article Preview

Abstract:

AS is a relatively new series of Magnesium alloys. The microstructure of this alloy can be improved for semisolid processing. The current research is concerned with the microstructure evolution of AS21 under the strain induced melt activated (SIMA) process. For this purpose, the AS21 alloy is cast and compressed 10-40% at 200 °C. The semisolid heat treatment is completed in a carbonate salt bath at different temperatures between 600-620 °C. The microstructure studies show that there is no favourable microstructure evolution between 600-610 °C. At 615 °C fine globular grains are obtained with the most desired mean grain size and sphericity of 67 µm and 81%, respectively. At 620 °C an undesirable coarsening phenomenon occurs that damages the microstructure globularity. SEM micrographs show that in a successful SIMA processing, the Mg2Si phases are broken into fine particles distributed within the grains and grain boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1146-1151

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Jiang, Y. Wang, and S. Luo: Mater. Character. Vol. 58 (2007), p.190.

Google Scholar

[2] J.L. Jorstad: Proceedings of 8th International conference on semisolid processing of alloys and composites, Cyprus (2004), p.15.

Google Scholar

[3] S. Ji, Z. Fan, and M.J. Bevis: Mater. Sci. Eng. A Vol. 299 (2001), p.210.

Google Scholar

[4] M.C. Flemings: Metall. Mater. Trans. A Vol. 22 (1991), p.269.

Google Scholar

[5] E. Tzimas, and A. Zavaliangos, Mater. Sci. Eng. A Vol. 289 (2000), p.217.

Google Scholar

[6] J.E. Kelly, E. Kenneth, and K.P. Young, US Patent 5178, 204. (1993).

Google Scholar

[7] E. Tzimas, A. Zavaliangos, Mater. Sci. Eng. A Vol. 289 (2000), p.228.

Google Scholar

[8] F. Czerwinski, in: Magnesium Injection Molding (Springer, New York, 2008).

Google Scholar

[9] P. Mathur, S. Annavarapu, D. Apelian, and A. Lawley: Mat. Sci. Eng. A Vol. 142 (1991), p.261.

Google Scholar

[10] H.V. Atkinson: Prog. Mater. Sci. Vol. 50 (2005), p.341.

Google Scholar

[11] Y. Sirong, L. Dongcheng, and N. Ki: Mater. Sci. Eng. A Vol. 420 (2006), p.165.

Google Scholar

[12] H.Q. Lin, J.G. Wang, H.Y. Wang, and Q.C. Jiang: J. Alloys Compd. Vol. 431 (2007), p.141.

Google Scholar

[13] A. Mahdavi, M. Bigdeli, M. Hajian Heidary, and F. Khomamizadeh: Solid State Phenom. Vols. 141-143 (2008), p.367.

DOI: 10.4028/www.scientific.net/ssp.141-143.367

Google Scholar

[14] S. Housh, and B. Mikucki, in: Selection and Application of Magnesium and Magnesium Alloys, edited by A. Stevenson, ASM International, Vol. 2 (1993), p.455.

DOI: 10.31399/asm.hb.v02.a0001074

Google Scholar

[15] S. Luo, Q. Chen, and Z. Zhao, Mater. Sci. Eng. A Vol. 501 (2009), p.146.

Google Scholar

[16] J.G. Wang, H.Q. Lin, Y.Q. Li, and Q.C. Jiang, J. Alloys Compd. Vol. 457 (2008), p.251.

Google Scholar

[17] Q.Q. Zhang, Z.Y. Cao, Y. B. Liu, J.H. Wu, and Y.F. Zhang, Mater. Sci. Eng. A Vol. 478 (2008), p.195.

Google Scholar

[18] Y.F. Zhang, Y.B. Liu, Z.Y. Cao, Q.Q. Zhang, and L. Zhang, J. Mater. Process. Technol. Vol. 209 (2009), p.1375.

Google Scholar

[19] J. Z. Sheng, Y. H. Hu, Z. X. Ping, S.O. Sugiyama, and J. Yanagimoto, J. Mater. Process. Technol. Vol. 202 (2008), p.412.

Google Scholar

[20] B. Bronfin, M. Katsi, and E. Aghion, Mater. Sci. Eng. A Vol. 302 (2001), p.46.

Google Scholar

[21] W. Blum, P. Zhang and B. Watzinger, B. V. Grossmann, and H. G. Haldenwanger, Mater. Sci. Eng. A Vols. 319-321 (2001), p.735.

Google Scholar

[22] J.G. Wang, P. Lu, H.Y. Wang, and Q.C. Jiang, Mater. Lett. Vol. 58 (2004), p.3852.

Google Scholar