Non-Isothermal Crystallization Kinetics of Co67Fe4Cr7Si8B14 Amorphous Alloy

Article Preview

Abstract:

Non-isothermal crystallization kinetics of Co67Fe4Cr7Si8B14 amorphous ribbons was studied by differential scanning calorimetry (DSC) technique under 10, 20, 30, 40 and 80 °Cmin-1 heating rates. It is found that Co67Fe4Cr7Si8B14 amorphous alloy exhibits two-stage crystallization on heating. The two crystallization peaks shift to higher temperatures with increasing heating rate. The apparent activation energies (EC) for the first stage of crystallization were determined as 443.44 and 434.47 kJmol-1 by using the Kissinger and Ozawa equations, respectively. Frequency factor (A) estimated to be 1.084×1026 s-1 using Kissinger equation. Kinetics parameters such as Crystallization exponent (n) and dimensionality of growth (Ndim) were determined using JMA (Johnson-Mehl-Avrami) method. Details of the nucleation and growth behaviours during the non-isothermal crystallization were studied in terms of local activation energy EC(x) by the OFW (Ozawa, Flynn and Wall) method. Also the activation energy for nucleation (En) and growth (Eg) separately estimated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1311-1317

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.L. Shanker Rao, K.N. Lad and A. Pratap: J. Therm. Anal. Vol. 78 (2004), p.769.

Google Scholar

[2] H.F. Li and R.V. Ramanujan: Mater. Sci. A 375–377 (2004), p.1087.

Google Scholar

[3] Z.Z. Yuan, X.D. Chen, B.X. Wang and Y.J. Wang: J. Alloys Compd. Vol. 407 (2006), p.163.

Google Scholar

[4] K. Song, X. Bian, J. Guo, X. Li, M. Xie and C. Dong: J. Alloys Compd. Vol. 465 (2008), p. L7.

Google Scholar

[5] J. Vázquez, P.L. López-Alemany, P. Villares and R. Jiménez-Garay: Mater. Chem. Vol. 57 (1998), p.162.

Google Scholar

[6] H.E. Kissinger: Anal. Chem. Vol. 29 (1957), p.1702.

Google Scholar

[7] T. Ozawa: Bull. Chem. Soc. Jpn. Vol. 38 (1965), p.1881.

Google Scholar

[8] T. Ozawa: J. Thermal Anal. Vol. 2 (1970), p.301.

Google Scholar

[9] M. Haddad-Sabzevar: Ph. D. Thesis. Ribbon formation and solidification behavior in planar flow melt spinning process. Stockholm (1994).

Google Scholar

[10] P. Supaphol, P. Thanomkiat, J. Junkasem and R. Dangtungee: Polym. Test. Vol. 26 (2007), p.20.

Google Scholar

[11] H. Nitsche, M. Stanislowski, F. Sommer and E.J. Mittemeijer: Ph. D. Thesis. Kinetics of crystallization in amorphous alloys; nucleation and growth. Universität Stuttgart (2005).

Google Scholar

[12] D.M. Minić, A. Maričić and B. Adnadević: J. Alloys Compd. Vol. 473 (2009), p.363.

Google Scholar

[13] A.A. Joraid, A.A. Abu-sehly, M. Abu El-Oyoun and S.N. Alamri: Thermochim. Acta. Vol. 470 (2008), p.98.

DOI: 10.1016/j.tca.2008.02.010

Google Scholar

[14] M.J. Starink: Thermochim. Acta. Vol. 404 (2003), p.163.

Google Scholar

[15] I.C. Rho, C.S. Yoon, C.K. Kim, T.Y. Byun and K.S. Hong: Mater. Sci. B 96 (2002), p.48.

Google Scholar

[16] J.S.C. Jang, I.H. Wang, L.J. Chang, G.J. Chen, T.H. Hung and J.C. Huang: Mater. Sci. A. 449–451 (2007), p.511.

Google Scholar

[17] D.W. Henderson: Therm. Anal. Vol. 15 (1979), p.325.

Google Scholar

[18] D.W. Henderson: J. Non-Cryst. Solids. Vol. 30 (1979), p.301.

Google Scholar