Elastic Constants, Equation of State and Mechanical Relaxations of some Metallic Glasses at High Pressure

Article Preview

Abstract:

One of the fundamental physical quantities necessary to describe the mechanical properties of the materials is the bulk modulus. In the present report, a simple method to estimate the values of the bulk modulus and its pressure derivative of metallic glasses is presented. The method which is based on a jellium model of metals provides a good agreement with measured data. The estimated values of the elastic constants have been used to determine the equation of state of bulk metallic glasses. It is found that the usual Murnaghan equation of state deviates considerably from the experimental results at high pressures. The deviation has been interpreted to arise from the structural relaxations. The effect of pressure on the fragility of bulk metallic glasses is discussed briefly.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1305-1310

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Inoue, K. Ohtera, K. Kita and T. Masumoto: Jpn. J. Appl. Phys. Vol. 27 (1988), p. L2248.

Google Scholar

[2] A. Peker and W.L. Johnson: Appl. Phys. Lett. Vol. 63 (1993), p.2342.

Google Scholar

[3] W. H. Wang, C. Dong and C. H. Shek: Mater. Sci. Eng. R Vol. 44 (2004), p.45.

Google Scholar

[4] M. Miller and P. Liaw, editors, Bulk Metallic Glasses (Springer, USA 2008).

Google Scholar

[5] S. Mechler, G. Schumacher, I. Zizak, M.P. Macht and N. Wanderka: Appl. Phys. Lett. Vol. 91 (2007), p.021907.

DOI: 10.1063/1.2755924

Google Scholar

[6] Y. Kawamura and A. Inoue: Appl. Phys. Lett. Vol. 77 (2000), p.1114.

Google Scholar

[7] G. J. Fan and H.J. Fecht: J. Chem. Phys. Vol. 116 (2002), p.5002.

Google Scholar

[8] M. Aniya and T. Shinkawa: Mater. Trans. Vol. 48 (2007), p.1793.

Google Scholar

[9] W.H. Wang, P. Wen, L.M. Wang, Y. Zhang, M.X. Pan, D.Q. Zhao and R.J. Wang: Appl. Phys. Lett. Vol. 79 (2001), p.3947.

Google Scholar

[10] Y. Yokota and M. Aniya: J. Therm. Anal. Cal. Vol. 99 (2010), p.105.

Google Scholar

[11] G.E. Fernandez, S.A. Serebrinsky, J.L. Gervasoni, J.P. Abriata: Int. J. Hydrog. Energy Vol. 29 (2004), p.93.

Google Scholar

[12] J.H. Rose and H.B. Shore: Phys. Rev. B Vol. 48 (1993), p.18254.

Google Scholar

[13] F. Perrott, and M. Rasolt: J. Phys. Condens. Matter Vol. 6 (1994), p.1473.

Google Scholar

[14] L.M. Wang, Z.J. Zhan, J. Liu, L.L. Sun, G. Li and W.K. Wang: J. Phys. Condens. Matter Vol. 13 (2001), p.5743.

Google Scholar

[15] C. A. Angell: J. Phys. Chem. Solids Vol. 49 (1988), p.863.

Google Scholar

[16] V.N. Novikov and A.P. Sokolov: Nature Vol. 431 (2004), p.961.

Google Scholar

[17] M. Aniya and M. Ikeda, J. Phys. Conf. Ser. Vol. 215 (2010), p.012083.

Google Scholar

[18] V.N. Novikov and A.P. Sokolov: Phys. Rev. B Vol. 74 (2006), p.064203.

Google Scholar