Development of Cu-Clad Metallic Glass for Soldering

Article Preview

Abstract:

Soldering is a potential technique for joining metallic glasses. It can be performed at far below the crystallization temperature of various metallic glasses; thus, there is no possibility of crystallization. However, Cu-Zr-based metallic glass displays poor wettability to Pb-free solder, because a strong native oxide film prevents direct contact between the solder and the glass. To overcome this problem, Cu-Zr-based metallic glass clad with a thin film of Cu has been developed. This was produced by casting the melt of a Cu36Zr48Al8Ag8 pre-alloy into a Cu mold cavity, inside which a thin film of Cu with a thickness of 2 μm was placed. Cu36Zr48Al8Ag8 metallic glass was successfully formed and welded to the Cu thin film. From microstructure analysis, it was found that a reaction layer was formed at the interface between the Cu and the Cu36Zr48Al8Ag8 metallic glass. However, no oxide layer was observed in the Cu-clad layer. It was found that the Cu cladding played an important role in preventing the formation of the surface oxide film. Consequently, solderability to the Cu-Zr-based metallic glass was drastically improved.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1343-1347

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Calin, J. Eckert, L. Schultz: Scr. Mater., Vol. 48 (2003), p.653.

Google Scholar

[2] J. Saida, A. Deny, H. Setyawan, H. Kato, A. Inoue: Appl Phys. Lett., Vol. 87 (2005), pp.151907-1.

Google Scholar

[3] W. H. Wang, H. Y. Bai: Mater. Lett., Vol. 44 (2000), p.59.

Google Scholar

[4] J. Das, M. B. Tang, K. B. Kim, R. Theissma, F. Baler, W. H. Wang, J. Eckert: Phys. Rev. Lett., Vol. 94 (2005), p.2055011.

Google Scholar

[5] K. B. Kim, J. Das, F. Baier, M. B. Tang, W. H. Wang, J. Eckert: Appl. Phys. Lett., Vol. 88 (2006), p.0519111.

Google Scholar

[6] H. Kato and A. Inoue: Mater. Trans. JIM, Vol. 38 (1997), p.793.

Google Scholar

[7] J. Li, L. Wang, H. F. Zhang, Z. Q. Hu, H. Cai: Mater. Lett, Vol. 61 (2007), p.2217.

Google Scholar

[8] A. Inoue, H. Horikiri, A. Kato and T. masumoto, Mater: Trans. JIM, Vol. 35 (1994), p.79.

Google Scholar

[9] J. Eckert, A. Kubler and L. Schultz: J. Appl. Phys., Vol. 85 (1999), p.7112.

Google Scholar

[10] J. Kim and Y. Kawamura: Scr. Mater., Vol. 56 (2007), p.709.

Google Scholar

[11] Y. Kawamura, Y. Ohno: A. Chiba, Mater. Sci. Forum, Vol. 386–388 (2002), p.553.

Google Scholar

[12] Y. Kawamura and Y. Ohno: Scr. Mater., Vol. 45 (2001), p.127.

Google Scholar

[13] Y. Kawamura and Y. Ohno: Scr. Mater., Vol. 45 (2001), p.279.

Google Scholar

[14] J. Kim, D. Lee, S. Shin, and C. Lee: Mater. Sci. and Eng. A, Vol. A434 (2006), p.194.

Google Scholar

[15] B. Li, Z. Y. Li, J. G. Xiong, L. Xing, D. Wang, and Y. Li: J. Alloys Comp., Vol. 413 (2006), p.118.

Google Scholar

[16] Y. Kawahito, Y. Niwa, T. Terajima and S. Katayama: Mater. Trans., Vol. 51 (2010), p.1433.

Google Scholar

[17] Y. Kawahito, T. Terajima, H. Kimura, T. Kuroda, K. Nakata, S. Katayama and A. Inoue: Mater. Sci. and Eng. B, Vol. B148 (2008), p.105.

Google Scholar

[18] M. Maeda, Y. Takahashi, M. Fukuhara, X. Wang, A. Inoue: Mater. Sci. and Eng. B, Vol. B148 (2008), p.141.

Google Scholar

[19] N. Nichikawa, K. Wongpiromsar, H. Abe, T. Takemoto, M. Fukuhara, A. Inoue: Mater. Trans., Vol. 50(2009), p.1326.

Google Scholar

[20] A. Imai, M. Katayama, S. Maruyama, H. Nishikawa, T. wada, H. kimura, M. Fukuhara, T. Takemoto, A. inoue and Y. Matsumoto: J. Mater. Res., Vol. 24 (2009), p.2931.

DOI: 10.1557/jmr.2009.0343

Google Scholar

[21] S. Tamura, Y. Tsunekawa, M. Okumiya and M. Hatakeyama: J. Mater Proc. Technol., Vol. 206 (2008), p.322.

Google Scholar