[1]
DIN EN ISO 17642- 1, 2 and 3.
Google Scholar
[2]
V. G. Michailov. Bewertung der Kaltrissneigung, Braunschweig - Kolloquium 3- 4 DVS-Bezirksverband Braunschweig, Salzgitter-Wolfsburg , pp.69-84. November, (1994).
Google Scholar
[3]
V. G. Michailov, K. u. Thomas, H. Wohlfahrt. Der Wasserstoff als maßgebliche Einflussgröße für die Kaltrissneigung von Stählen beim Schweißen. DVS Vol. 176, pp.30-34, (1996).
Google Scholar
[4]
C. Schwenk, Th. Kannengiesser and M. Rethmeier. Restraint Conditions and Welding Residual Stresses in Self-Restrained Cold Cracking Tests. Trends in Welding Research, 8th I. Conference, (2009).
Google Scholar
[5]
V. G. Michailov. Development and Application of theoretical and experimental Methods for Prediction of Temperature Distributions, Phase Transformations, Gas Diffusion and Welding Stersses and Distortions. (in Russian), Diss., States T. U. St. Petersburg, p.32, (1997).
Google Scholar
[6]
M. Stadtaus, V. G. Michailov and H. Wohlfahrt. Numerical calculation of the main factors on cold cracking (Mat. -Wiss. u. Werkstofftechnik 34. P. 145-151), (2003).
DOI: 10.1002/mawe.200390007
Google Scholar
[7]
V. G. Michailov and V. A. Karkhin. Theoretisch - experimentelles Modell der Kaltrissentstehung beim Schweißen von legierten Stählen. (in Russisch). Internationale Tagung Risse in den Schweißverbindungen, Bratislava , 78-84. (1985).
Google Scholar
[8]
MATHEMATICAL MODELLING OF WELD PHENOMENA 7. published by T. U. Graz.
Google Scholar
[9]
P. Zimmer. Zur Bewertung der Kaltrisssicherheit von Schweißverbindungen aus hochfesten Feinkornbaustählen. BAM-Dissertationsreihe. Band 29. Berlin (2007).
Google Scholar
[10]
O. Kassatkin. Berechnung der der Kaltrissbildung vorbeugenden technologischen Schweißparameter. Schweißen und Schneiden 38, (1986).
Google Scholar
[11]
J. Mikula. The role of hydrogen in the initiation of cold cracking (Part I), W. I. 8, pp.761-765, (1994).
Google Scholar
[12]
I. Maroef, D. L. Olson, M. Eberhart, and G. R. Edwards. Hydrogen trapping in ferritic steelweldmetal. International Materials Reviews Vol. 47 No. 4, p.191, (2002).
DOI: 10.1179/095066002225006548
Google Scholar
[13]
Martin Möser und Günther Oehmigen, Schweißtechnik, Berlin 34, p.198/199, (1984).
Google Scholar
[14]
G. G. Juilfs. Das Diffusionsverhalten von Wasserstoff in einem niedriglegierten Stahl unter Berücksichtigung des Verformungsgrades und der Deckschichtbildung in alkalischen Medien, Hamburg, Diss. (2000).
Google Scholar
[15]
F. Matsuda, H. Nakagawa, K. Shinozaki, Y. Nishio and H. Kihara: Effect of Transformation Expansion on Restraint Stress of Weldment in Relation to Cold Cracking of High Strength Steels. W. R. I. of Osaka Uni. Japan (1982).
Google Scholar
[16]
K. Satoh, Y. Ueda and H. Kihara. Recent trend of researches on restraint stresses and strain for weld cracking. Osaka University Transactions of JWRI Vol. 1, No. 1, (1972).
Google Scholar
[17]
S. A. Gedeon and T.W. Eagar. Thermomechanical Analysis of Hydrogen Absorption in Welding. Welding research supplement . July (1990).
Google Scholar
[18]
Y. Murakami, T. Kanezaki and Y. Mine: Hydrogen Effect against Hydrogen Embrittlement. Metallurgical and Materials Transactions A Vol. 41. Springerlink. com (2010).
DOI: 10.1007/s11661-010-0275-6
Google Scholar
[19]
K. Bergers, E. Camisao de Souza, I. Thomas, N. Mabho, and J. Flock. Determination of Hydrogen in Steel by Thermal Desorption Mass Spectrometry. Steel research int. 81, (2010).
DOI: 10.1002/srin.201000023
Google Scholar
[20]
H. D. Schmidt, D. Dengel and H. Schlicht. Zur Untersuchung von Anlaßvorgängen bei induktiver Schnellerwärmung. HTM 36. (1981).
DOI: 10.1515/htm-1981-360501
Google Scholar