[1]
Lendlein A. and Kelch S., Shape-memory polymers Angew, Chem. Int. Edn 41, (2002) 2034–57.
DOI: 10.1002/1521-3773(20020617)41:12<2034::aid-anie2034>3.0.co;2-m
Google Scholar
[2]
Sokolowski W. M. and Hayashi S., Applications of cold hibernated elastic memory (CHEM) structures, Proceedings of the SPIE - The International Society for Optical Engineering 5056 (2003) 534-44.
DOI: 10.1117/12.483480
Google Scholar
[3]
Gall K., Mikulas M., Munshi N. A., Beavers F. and Tupper M., Carbon fiber reinforced shape memory polymer composites, J. Intell. Mater. Syst. Struct 11 (2000) 877–86.
DOI: 10.1177/104538900772664053
Google Scholar
[4]
Gall K., Dunn M. L., Liu Y., Finch D., Lake M. and Munshi N. A., Shape memory polymer nanocomposites, Acta Mater. 50 (2002) 5115–26.
Google Scholar
[5]
Tobushi H., Okumura K., Endo M. and Hayashi S., Thermomechanical properties of polyurethane-shape memory polymer foam, J. Intell. Mater. Syst. Struct. 12 (2001) 283–7.
DOI: 10.1106/fnsx-ap9v-qp1r-nmwv
Google Scholar
[6]
Di Prima M. A., Lesniewski M., Gall K., McDowell D. L., Sanderson T. and Campbell D., Thermo-mechanical behavior of epoxy shape memory polymer foams, Smart Mater. Struct. 16 (2007) 2330–40.
DOI: 10.1088/0964-1726/16/6/037
Google Scholar
[7]
Di Prima M. A., Gall K., McDowell D. L., Guldberg R., Lin A., Sanderson T., Campbell D. and Arzberger S. C., Deformation of epoxy shape memory polymer foam. Part I: experiments and macroscale constitutive modelling, Mech. Mater. 42 (2010) 304–14.
DOI: 10.1016/j.mechmat.2009.11.001
Google Scholar
[8]
Di Prima M. A., Gall K., McDowell D. L., Guldberg R., Lin A., Sanderson T., Campbell D. and Arzberger S. C., Deformation of epoxy shape memory polymer foam: part II. Mesoscale modeling and simulation, Mech. Mater. 42 (2010) 315–25.
DOI: 10.1016/j.mechmat.2009.11.002
Google Scholar
[9]
Sokolowski W. M., Chmielewski A. B., Hayashi S. and Yamada T., Cold hibernated Elastic Memory (CHEM) Self-Deployable Structures, Proceedings of SPIE - The International Society for Optical Engineering 3669 (1999)179-185.
DOI: 10.1117/12.349675
Google Scholar
[10]
Quadrini F. and Squeo E., Solid-state foaming of epoxy resin, J. Cell. Plast. 44 (2008)161–73.
Google Scholar
[11]
Squeo E. A. and F. Quadrini, Shape memory epoxy foams by solid-state foaming, Smart Mater. Struct. 19 (2010)105002 (9pp).
DOI: 10.1088/0964-1726/19/10/105002
Google Scholar
[12]
Murray N. G. D. and Dunand D. C., Microstructure evolution during solid-state foaming of titanium, Compos. Sci. Technol. 63 (2003) 2311–6.
Google Scholar
[13]
Murray N. G. D., Schuh C. A. and Dunand D. C., Solid-state foaming of titanium by hydrogen-induced internal-stress superplasticity, Scr. Mater. 49 (2003) 879–83.
DOI: 10.1016/s1359-6462(03)00438-x
Google Scholar
[14]
Santo L., Mascetti G., Villadei W., Bernabei M., Zolesi V., Shape Memory Epoxy Foams for Aerospace: Experimentation on ISS, Proceedings of 61 Int. Astronautical Congress, Prague, CZ, (2010) ref. IAC-10-A2. 6. 6.
Google Scholar
[15]
F. Quadrini, A. Guglielmotti, F. Lamastra, C. Lucignano, F. Nanni, L. Santo, E.A. Squeo, Epoxy nanocomposite foams by solid-state foaming, ICCE-17, 26 July - 1 August 2009, Hawaii, USA.
Google Scholar