Structure of Disordered Materials Studied by High-Energy X-Ray Diffraction Technique

Article Preview

Abstract:

With the arrival of the third generation of synchrotron sources and/or the introduction of advanced insertion devices (wigglers and undulators), the high energy (E > 50 keV) x-ray diffraction technique has become feasible, leading to new approaches in the quantitative study of the structure of disordered materials than was hither to available. Since we built the SPring-8 bending magnet beamline BL04B2 and two-axis diffractometer for disordered materials in 1999, we have studied on disordered materials from ambient to extreme condition. In this article, the high-energy x-ray diffraction beamline BL04B2 of SPring-8 and recent developments of ancillary equipment (automatic sample changer, conventional high-temperature furnace, aerodynamic levitation furnace) are introduced. Furthermore the structural analysis on the basis of diffraction data with the aid of computer simulations, which we performed in the last 10 years is reviewed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1690-1695

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Neuefeind and H.F. Poulsen: Physica Scripta vol. T57 (1995), p.12.

Google Scholar

[2] H.F. Poulsen, J. Neuefeind, H. -B. Neumann, J.R. Schneider and M.D. Zeidler: J. Non-Cryst. Solids vol. 188 (1995), p.63.

Google Scholar

[3] M. Isshiki, Y. Ohishi, S. Goto, K. Takeshita and T. Ishikawa: Nucl. Instrum. Methods vol. 467−468 (2001), p.663.

Google Scholar

[4] S. Kohara et al.: Nucl. Instrum. Methods vol. 467−468 (2001), p.1030.

Google Scholar

[5] S. Kohara et al.: J. Phys.: Condens. Matter vol. 19 (2007), p.506101.

Google Scholar

[6] T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent and D.M. Herlach: Phys. Rev. Lett. vol. 89 (2005), p.075507.

Google Scholar

[7] S. Krishnan and D.L. Price: J. Phys.: Condens. Matter vol. 12 (2000), p. R145.

Google Scholar

[8] K.F. Kelton et al.: Phys. Rev. Lett. vol. 90 (2000), p.195504.

Google Scholar

[9] S. Kohara et al.: Science vol. 303 (2004), p.1649.

Google Scholar

[10] S. Kohara et al.: Phys. Rev. B vol. 82 (2010), p.134209.

Google Scholar

[11] T. Uchino et al.: Phys. Rev. B vol. 69 (2004), p.155409.

Google Scholar

[12] R.T. Hart et al.: Phys. Rev. Lett. vol. 94 (2005), p.047801.

Google Scholar

[13] B. Auon et al.: J. Chem. Phys. 10. 1063/1. 3563540.

Google Scholar

[14] A. Zeidler et al.: Phys. Rev. B vol. 82 (2010), p.104208.

Google Scholar

[15] J. Haines et al.: J. Am. Chem. Soc. vol. 131 (2009), p.12333.

Google Scholar

[16] L. Temleitner et al.: Phys. Rev. B vol. 78 (2008), p.014205.

Google Scholar

[17] J. Akola et al.: Phys. Rev. B vol. 80 (2009), p.020201(R).

Google Scholar

[18] T. Matsunaga et al.: Nature Mater. vol. 10 (2011), p.129.

Google Scholar

[19] R.L. McGreevy and L. Pusztai: Mol. Simul. vol. 1 (1988), p.356.

Google Scholar