Time-Resolved X-Ray Diffraction Study on Solidification of Fe-B and Fe-C Eutectic Alloys

Article Preview

Abstract:

Solidification processes of Fe-B and Fe-C eutectic alloys have been investigated by a time-resolved synchrotron x-ray diffraction under containerless cooling conditions using a conical nozzle levitation technique. To observe relative variations of structure from the undercooled liquid to crystalline phase, we have conducted millisecond order time-resolved x-ray diffraction experiments with a two-dimensional detector. The structural variations observed during the solidification of the Fe83C17 alloy were identified as the phase transformation process expected from the Fe-C phase diagram. As for the Fe83B17 alloy, it was revealed that a metastable phase composed of Fe23B6 compound was precipitated as a primary crystalline phase from the undercooled liquid. In addition, decomposition of the metastable Fe23B6 phase showed dependence on the cooling rate of the sample. At the cooling rate of 30 K/s, the Fe23B6 phase decomposed to bcc-Fe and Fe2B phases with decreasing temperature. On the contrary, at the cooling rate of 180 K/s, the metastable Fe23B6 phase remained in spite of an appearance of the bcc-Fe phase. By comparing the primary crystalline phase between the Fe83C17 and the Fe83B17 alloys, we suggest that the formability of the metastable Cr23C6-type compound is closely related with the glass-forming ability of Fe-metalloid binary alloys.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1702-1706

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Fukamichi, M. Kikuchi, S. Arakawa, T. Masumoto: Solid State Commun. 23 (1977) p.955.

Google Scholar

[2] R. Hasegawa, R. Ray: J. Appl. Phys., 49 (1978) p.4174.

Google Scholar

[3] A. Hirata, Y. Hirotsu, T. Ohkubo, T. Hanada, V. Bengus: Phys. Rev. B, 74 (2006) 1-9.

Google Scholar

[4] A. Inoue, J.S. Gook, Mater. Trans. JIM 36 (1995) p.1180.

Google Scholar

[5] M. Imafuku, S. Sato, E. Matsubara, and A. Inoue: J. Non-Cryst. Solids 312-314 (2002) p.589.

Google Scholar

[6] A. Hirata, Y. Hirotsu, K. Amiya, A. Inoue, Phys. Rev. B 78 (2008) p.2.

Google Scholar

[7] A. Hirata, Y. Hirotsu, K. Amiya, N. Nishiyama, A. Inoue: Phys. Rev. B, 80 (2009) p.4.

Google Scholar

[8] P.G. Boswell, G.A. Chadwick: J. Mater. Sci. 11 (1976) 2287-2296.

Google Scholar

[9] T. Nasu, K. Nagaoka, N. Itoh, K. Suzuki: J. Non-Cryst. Solids 122 (1990) p.216.

Google Scholar

[10] D.L. Price, High-temperature Levitated Materials, Cambridge Univ Pr, (2010).

Google Scholar

[11] S. Krishnan, J.J. Felten, J.E. Rix, J.K.R. Weber, P.C. Nordine, M.A. Beno, S. Ansell, D.L. Price, Rev. Sci. Instrum. 68 (1997) p.3512.

DOI: 10.1063/1.1148315

Google Scholar

[12] S. Ansell, S. Krishnan, J.K.R. Weber, J.J. Felten, P.C. Nordine, M.A. Beno, D.L. Price, M.L. Saboungi: Phys. Rev. Lett. 78 (1997) p.464.

DOI: 10.1103/physrevlett.78.464

Google Scholar

[13] S. Krishnan and D. L. Price: J. Phys.: Condens. Matter, 12 (2000) R145.

Google Scholar

[14] T. Akimoto, A. Mizuno, M. Watanabe, Y. Yokoyama, S. Kohara, M. Ito, M. Takata: Mater. Res. Soc. Symp. Proc., 1152E (2009) TT01.

Google Scholar

[15] M. Watanabe, T. Akimoto, A. Mizuno, S. Kohara: Mater. Sci. Forum 638-642 (2010) p.1678.

Google Scholar

[16] C.M. Fang, M. a van Huis, M.H.F. Sluiter, H.W. Zandbergen: Acta Mat. 58 (2010) p.2968.

Google Scholar

[17] Y. Khan and H. Wibbeke: Z. Metallkd. 82 (1991) p.703.

Google Scholar

[18] M. Imafuku, S. Sato, H. Koshiba, E. Matsubara, A. Inoue: Mater. Trans. JIM 41 (2000) p.1526.

Google Scholar