Application of EBSD to the Crystallographic Investigation on Ni-Mn-Ga Alloys

Article Preview

Abstract:

For off-stoichiometric Ni2MnGa ferromagnetic shape memory alloys, a large shape change could be induced through the rearrangement of martensitic variants under an external magnetic field. Insight into the orientation relationships of martensitic variants and the characteristics of variant boundaries is thus essential for understanding the magnetic shape memory performance. In this paper, a thorough crystallographic investigation was made on the incommensurate 7M modulated martensite in one polycrystalline Ni50Mn30Ga20 alloy by means of X-ray diffraction and SEM electron backscattered diffraction (EBSD). Locally, there are four differently-oriented martensitic variants, being twin related to one another. The twin interface planes are coherent and they are in coincidence with the respective twinning planes (K1). A primary exploration was performed to improve the microstructure by repeated magnetic field training during phase transition. The present investigation could offer useful guidance to develop specific technique for microstructure optimization.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1879-1884

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Ullakko, J. K. Huang, C. Kantner, R. C. O'Handley and V. V. Kokorin: Appl. Phys. Lett. Vol. 69 (1996), p. (1966).

Google Scholar

[2] P. J. Webster, K. R. A. Ziebeck, S. L. Town and M. S. Peak: Philos. Mag. B Vol. 49 (1984), p.295.

Google Scholar

[3] V. A. Chernenko, E. Cesari, V. V. Kokorin and I. N. Vitenko: Scr. Metall. Mater. Vol. 33 (1995), p.1239.

Google Scholar

[4] A. Sozinov, A. A. Likhachev, N. Lanska and K. Ullakko: Appl. Phys. Lett. Vol. 80 (2002), p.1746.

Google Scholar

[5] P. Müllner, V. A. Chernenko and G. Kostorz: J. Appl. Phys. Vol. 95 (2004), p.1531.

Google Scholar

[6] J. Pons, V. A. Chernenko, R. Santamarta and E. Cesari: Acta Mater. Vol. 48 (2000), p.3027.

Google Scholar

[7] L. Righi, F. Albertini, E. Villa, A. Paoluzi, G. Calestani, V. A. Chernenko, S. Besseghini, C. Ritter and F. Passaretti: Acta Mater. Vol. 56 (2008), p.4529.

DOI: 10.1016/j.actamat.2008.05.010

Google Scholar

[8] M. Nishida, T. Hara, M. Matsuda and S. Ii: Mater. Sci. Eng. A Vol. 481-482 (2008), p.18.

Google Scholar

[9] R. Tickle and R. D. James: J. Magn. Magn. Mater. Vol. 195 (1999), p.627.

Google Scholar

[10] O. Heczko, L. Straka, N. Lanska, K. Ullakko and J. Enkovaara: J. Appl. Phys. Vol. 91 (2002), p.8228.

DOI: 10.1063/1.1453944

Google Scholar

[11] Z. B. Li, Y. D. Zhang, C. Esling, X. Zhao, Y. D. Wang and L. Zuo: J. Appl. Cryst. Vol. 43 (2010), p.617.

Google Scholar

[12] J. W. Christian and S. Mahajan: Prog. Mater. Sci. Vol. 39 (1995), p.1.

Google Scholar

[13] B. A. Bilby and A. G. Crocker: Proc. R. Soc. Ser. A Vol. 288 (1965), 240.

Google Scholar

[14] Y. D. Zhang, Z. B. Li, C. Esling, J. Muller, X. Zhao and L. Zuo: J. Appl. Cryst. Vol. 43 (2010), p.1426.

Google Scholar

[15] Z. B. Li, Y. D. Zhang, C. Esling, X. Zhao and L. Zuo: Acta Mater. Vol. 59 (2011), doi: 10. 1016/j. actamat. 2011. 01. 015.

Google Scholar

[16] Y. D. Zhang, C. Esling, X. Zhao and L. Zuo: J. Appl. Cryst. Vol. 40 (2007), p.436.

Google Scholar