Shielding Effectiveness of CNTs/SSFs/PA6 Conductive Composites

Article Preview

Abstract:

A series of carbon nanotube (CNTs) and stainless steel fiber (SSFs) filled nylon 6 (PA6) conductive composites were synthesized for electromagnetic interference (EMI) shielding applications. The materials were prepared by the melt blending method with CNTs weight fraction of 1 and 3 wt% and SSFs of 2, 4, 6, 8, 10, and 12 wt%. The shielding effectiveness, electrical resistance and crystallization behaviors were measured. The results indicate that the shielding effectiveness and electrical properties can be improved by increasing either SSFs or CNTs contents. Higher content of CNTs can bring forward the percolation threshold and enhance the shielding effectiveness to 51.8 dB. Due to the nanoconfinement/multiple nucleation effects, PA6 crystallization behavior is influenced by adding the CNTs and SSFs.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1873-1878

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Gubbels, S. Blacher, E. vanlatherm, R. Jerom and R. deltour, Macromolecules, Vol. 28 (1995), pp.1559-1566.

Google Scholar

[2] F. Gubbels, R. Jerome, Ph. Teyssie, E. Vanlathem, R. Deltour, A. Calderone, V. Parente and J. L. Bredas, Macromolecules, Vol. 27 (1994), p.1972-(1974).

DOI: 10.1021/ma00085a049

Google Scholar

[3] G. Z. Wu, S. Asai, C. Zhang, T. Miura and M. Sumita, J. Applied Physics, Vol. 88 (2000), pp.1480-1487.

Google Scholar

[4] C. S. Chen, W. R. Chen, S. C. Chen and R. D. Chien, International Communication in Heat and Mass Transfer, Vol. 35 (2008), pp.744-749.

Google Scholar

[5] S. Y. Yang, C. Y. Chen and S. H. Parng, Polymer Composites, Vol. 23 (2002), pp.1003-1013.

Google Scholar

[6] E. Logakis, E. Pollatos, Ch. Pandis, V. Peoglos, I. Zuburtikudis, C.G. Delides, A. Vatalis, M. Gjoka, E. Syskakis, K. Viras and P. Pissis, Composites Science and Technology, Vol. 70 (2010), pp.328-335.

DOI: 10.1016/j.compscitech.2009.10.023

Google Scholar

[7] R. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer and K. I. Winey, Chem Phys Lett; Vol. 330 (2000), pp.219-225.

DOI: 10.1016/s0009-2614(00)01013-7

Google Scholar

[8] L. Jin, C. Bower and O. Zhou, Appl. Phys. Lett. Vol. 73 (1998), pp.1197-1199.

Google Scholar

[9] O. Regev, P.N.B. ElKati, J. Loos and C.E. Koning, Advanced Materials, , Vol. 16 (2004), pp.248-251.

Google Scholar

[10] T. Kimura, H. Ago, M. Tobita, S. Ohshima, M. Kyotani and M. Yumura, Advanced Materials, Vol. 14 (2002), pp.1380-1383.

DOI: 10.1002/1521-4095(20021002)14:19<1380::aid-adma1380>3.0.co;2-v

Google Scholar

[11] Y. P. Khanna and W. PKuhn, Journal of Polymer Science, Part B: Polymer Physics, Vol. 35 (1997), pp.2219-2231.

Google Scholar

[12] T. X. Liu, I. Y. Phang, L. Shen, S. Y. Chow and W. D. Zhang, Macromolecules, Vol. 37 (2004), pp.7214-7222.

Google Scholar

[13] I. Y. Phang, J. H. Ma, L. Shen, T. X. Liu and W. D. Zhang, Polymer International, Vol. 55 (2006), pp.71-79.

Google Scholar

[14] D. M. Bigg, Advances In Polymer Technology, Vol. 4 (1984), pp.255-266.

Google Scholar

[15] D. M. Bigg and D. E. Stutz, Polymer Composites, Vol. 4 (1983), pp.40-46.

Google Scholar

[16] S. Geetha, K. K. Satheesh Kumar, Chepuri R. K. Rao, M. Vijayan and D. C. Trivedi, Journal of Applied Polymer Science, Vol. 112 (2009), p.2073–(2086).

DOI: 10.1002/app.29812

Google Scholar