Microstructural and Mechanical Properties of UFG Silver Subjected to Severe Plastic Deformation by ECAP

Article Preview

Abstract:

The present contribution is aimed at investigating the microstructure evolution of commercially pure silver under severe plastic deformation conditions. ECAP billets have been produced by using a die with channels intersecting at 90° and straining the samples at room temperature. The evolution of the microstructure as a function of imparted strain was evaluated by scanning electron microscopy as well as X-ray diffractometry. Furthermore, tensile properties were measured from ECAP billets in order to evaluate the strengthening and work hardening behaviour of silver as a function of structure evolution. Comparison in terms of grain structure and corresponding properties are also drawn by considering published data about Al-Mg-Si alloy samples ECAP-processed by identical routes and parameters.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1847-1852

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.T. Zhu, T.G. Langdon: Mater. Sci. Engng. 409 (2005) p.234.

Google Scholar

[2] B. Zhu, R.J. Asaro, P. Krysl, R. Bailey: Acta Mater. 53 (2005) p.4825.

Google Scholar

[3] L. Balogh, T. Ungar, Y. Zhao, Y.T. Zhu, Z. Horita, C. Xu, T.G. Langdon: Acta Mater. 56 (2008) p.809.

Google Scholar

[4] Z.W. Wang, Y.B. Wang, X.Z. Liao, Y.H. Zhao E.J. Lavernia, Y.T. Zhu, Z. Horita, T.G. Langdon: Scripta Mater. 60 (2009) p.52.

Google Scholar

[5] M. Dao, L. Lu, Y.F. Shen, S. Suresh: Acta Mater. 54 (2006) p.5421.

Google Scholar

[6] X. Wu, Y.T. Zhu, M.W. Chen, E Ma: Scripta Mater. 54 (2006) p.1685.

Google Scholar

[7] L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, S. Suresh: Acta Mater. 53 (2005) p.2169.

Google Scholar

[8] X.H. Chen, L. Lu: Scripta Mater. 57 (2007) p.133.

Google Scholar

[9] H. Conrad, K. Jung: Mater. Sci. Engng. A391 (2005) p.272.

Google Scholar

[10] H. Paul, J.H. Driver, C. Maurice, A. Piatkovski: Acta Mater. 55 (2007) p.833.

Google Scholar

[11] J. Gubicza, N.Q. Chinh, J.L. Labar, Z. Hegedus, C. Xu, T.G. Langdon: Scripta Mater. 58 (2008) p.775.

Google Scholar

[12] J. Gubicza, N.Q. Chinh, J.L. Labar, Z. Hegedus, T.G. Langdon: J. Mater. Sci. 44 (2009) p.1656.

Google Scholar

[13] Y. Iwahashi, J. Wang, M. Horita, M. Nemoto, T.G. Langdon: Scripta Mater. 35 (1996) p.143.

Google Scholar

[14] M. Vedani, P. Bassani, M. Cabibbo, E. Evangelista: Metall. Sci. Techn. 21 (2003) p.3.

Google Scholar

[15] T. Ungár, A. Borbély: App. Phys. Lett. 69 (1996) p.3173.

Google Scholar

[16] H. Jazaeri, F.J. Humphreys: Acta Mater. 52 (2004) p.3239.

Google Scholar

[17] H. Jazaeri, F.J. Humphreys: Acta Mater. 52 (2004) p.3251.

Google Scholar

[18] M.A. Meyers, A. Mishra, D.J. Benson: Prog. Mater. Sci. 1 (2006) p.427.

Google Scholar