Embrittlement of a High Manganese TWIP Steel in the Presence of Liquid Zinc

Article Preview

Abstract:

In the past decade, new steels have been developed for the automotive industry in the framework of environmental requirements. Among them, high manganese austenitic steels combining exceptional properties of strength and ductility are particularly promising. These exceptional properties stem from a fully austenitic structure at room temperature and a twinning deformation mode in addition to the classical mechanism of dislocation gliding, known as the TWinning Induced Plasticity (TWIP) effect. In this study, the cracking resistance of the Fe22Mn0.6C TWIP steel was investigated in relation to the liquid metal embrittlement (LME) phenomenon. Indeed, liquid zinc has been found to have an embrittling effect on such steels. Electro-galvanized specimens were subjected to hot tensile tests using Gleeble® thermo-mechanical simulator. The influence of different parameters such as temperature and strain rate on embrittlement was studied. The results show that this steel can be embrittled by liquid zinc within a limited range of temperature depending on strain rate. A critical stress for cracking has been defined for each embrittlement condition.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

2041-2046

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Grassel, L. Kruger, G. Frommeyer, L.W. Meyer, Int. J. Plasticity 16 (2000) p.1391–1409.

Google Scholar

[2] S. Allain, J. -P. Chateau, O. Bouaziz, Materials Science and Engineering A 387–389 (2004) p.143–147.

Google Scholar

[3] D. Barbier, N. Gey, S. Allain, N. Bozzolo, M. Humbert, Materials Science and Engineering A 500 (2009) p.196–206.

DOI: 10.1016/j.msea.2008.09.031

Google Scholar

[4] B. Joseph, M. Picat, F. Barbier, Eur. Phys. J. AP 5, (1999), pp.19-31.

Google Scholar

[5] M.H. Kamdar, Liquid Metal Embrittlement, Metals Handbook, 9th Edition, Vol. 13, Corrosion (Materials Park, OH: ASM International, 1987), pp.171-184.

Google Scholar

[6] G. Nicaise, Sensibilité de l'acier martensitique Z10CCNbV9-1 à la fragilisation par les métaux liquides, PhD Thesis, Université des Sciences et Technologies de Lille, (2001).

Google Scholar

[7] P.J. L Fernandes, D.R.H. Jones D.R.H., Eng. Failure Anal. 3 (1996) pp.299-302.

Google Scholar

[8] P.J. L Fernandes, D.R.H. Jones D.R. H, Eng. Failure Anal. 3 (1997) pp.195-204.

Google Scholar

[9] B. Joseph, F. Barbier, M. Aucouturier, Scripta Materialia, Vol. 40, No. 8, 1999, p.893–897.

DOI: 10.1016/s1359-6462(99)00030-5

Google Scholar

[10] G. Nicaise, A. Legris, J. B. Vogt, J. Foct, Journal of Nuclear Materials 296 (2001) pp.256-264.

DOI: 10.1016/s0022-3115(01)00525-6

Google Scholar

[11] R.W. Bosch, S. Van Dyck, A. Al Mazouzi, Fusion Engineering and Design 82 (2007) p.2615–2620.

DOI: 10.1016/j.fusengdes.2007.04.006

Google Scholar

[12] C.P. Dillon, Liquid Metal Cracking of Stainless Steels in Chemical Plants, Materials Performance, Vol. 29, No. 11, 1990, pp.54-55.

Google Scholar

[13] D.W. Alley, D.J. Barker, M.W. Mucek, S.A. Bradley, Liquid Metal Embrittlement of Alloy 800 Hydrogen Unit Preheat Tubes, Corrosion 2003, Paper No. 03659.

Google Scholar