Study of the Microstructure and Strain Induced Precipitation during Thermomechanical Processing of Low Carbon Microalloyed Steels

Article Preview

Abstract:

A series of anisothermal multipass hot torsion tests were carried out to simulate hot rolling on three high-strength low-carbon steels with different amounts of Mn, Mo, Nb and Ti and designed for pipeline construction. Mean Flow Stress was graphically represented against the inverse of temperature to characterize the evolution of austenite microstructure during rolling. The effect of austenite strengthening obtained at the end of thermomechanical processing on the final microstructure obtained after cooling was studied. Higher levels of austenite strengthening before cooling promote a refinement of final microstructure but can also restrict the fraction of low-temperature transformation products such as acicular ferrite. This combined effect gives rise to a wide range of final microstructures and mechanical properties depending on the composition, processing schedule and cooling rates applied. On the other hand, the precipitation state obtained at diverse temperatures during and at the end of hot rolling schedule was evaluated by means of transmission electron microscopy (TEM) in two microalloyed steels. It was found that two families of precipitates with different morphology, composition and mean size can coexist in microalloyed steels.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

2118-2123

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. T. Corbett, R. R. Bowen, C. W. Petersen, Int. J. Offshore Polar Eng. 14 (2004) 75–80.

Google Scholar

[2] I. D. S. Bott, L. F. G. De Souza, J. C. G. Teixeira, P. R. Rios, Metall. Mater. Trans. A 36A (2005) 443-454.

Google Scholar

[3] W. Wang, Y. Shan, K. Yang, Mater. Sci. Eng. A 502 (2009) 38–44.

Google Scholar

[4] T. Schambron, A. W. Phillips, D. M. O'Brien, J. Burg, E. V. Pereloma, C. C. Killmore, J. A. Williams, ISIJ Int. 49 (2009) 284–292.

DOI: 10.2355/isijinternational.49.284

Google Scholar

[5] J. Y. Koo, M. J. Luton, N. V. Bangaru et al., Int. J. Offshore Polar Eng. 14 (2004) 2–10.

Google Scholar

[6] C. I. Garcia, K. Cho, M. Hua, A. J. DeArdo, Mater. Sci. Forum 638-642 (2010), 124–129.

Google Scholar

[7] M. -C. Zhao, K. Yang, Y. -Y. Shan, Mater. Lett. 57 (2003) 1496–1500.

Google Scholar

[8] Y. M. Kim, H. Lee, N. J. Kim, Mater. Sci. Eng. A 478 (2008) 361–370.

Google Scholar

[9] Y. Smith, A. Coldren, R. Cryderman, Met. Sci. Heat Treat. 18 (1976) 59–65.

Google Scholar

[10] S. Y. Shin, S. Y. Han, B. Hwang, C. G. Lee, S. Lee, Mater. Sci. Eng. A 517 (2009) 212–218.

Google Scholar

[11] F. -R. Xiao, B. Liao, Y. -Y. Shan, G. -Y. Qiao, Y. Zhong, C. Zhang, K. Yang, Mater. Sci. Eng. A 431 (2006) 41–52.

Google Scholar

[12] P. P. Suikkanen, J. I. Kömi, L. P. Karjalainen, Met. Sci. Heat Treat. 47 (2005) 507–511.

Google Scholar

[13] S. F. Medina, M. Gómez, E. Rodríguez, L. Rancel, ISIJ Int. 48 (2008) 1263–1269.

Google Scholar

[14] M. Gómez, L. Rancel, B. J. Fernández, S. F. Medina, Mater. Sci. Eng. A 501 (2009) 188–196.

Google Scholar

[15] M. Gómez, S. F. Medina, P. Valles, ISIJ Int. 45 (2005) 1711–1720.

Google Scholar

[16] S. Shanmugam, N. K. Ramisetti, R. D. K. Misra, J. Hartmann, S.G. Jansto, Mater. Sci. Eng. A 478 (2008) 26–37.

Google Scholar

[17] A. Faessel, Rev. Métall. Cah. Inf. Tech. 33 (1976) 875–892.

Google Scholar

[18] F. H. Samuel, S. Yue, J. J. Jonas, B. A. Zbinden, ISIJ Int. 29 (1989) 878–886.

Google Scholar

[19] M. Gómez, P. Valles, S. F. Medina, Mater. Sci. Eng. A 528 (2011) 4761–4773.

Google Scholar

[20] E. T. Turkdogan, Iron Steelmaker 16 (1989) 61–75.

Google Scholar