Improved Performance in Aerospace Structures with Ti and Ni Metal Matrix Composites

Article Preview

Abstract:

The external structures of supersonic vehicles are exposed in several critical regions to temperatures that could reach 1000°C. This limit is higher than any safe operative service not only for titanium alloys but also for commercial nickel superalloys. The simplest way to improve titanium and nickel matrices temperature behavior (i.e: strength and fatigue resistance) is to introduce a strengthening phase in its matrix. These class of materials are known as: Metal Matrix Composites (MMC). It is possible reinforce both titanium and nickel superalloys by mean of high temperature resistant ceramic fibers.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

240-245

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.E. Debolt: Boron and Other High Strength, Low Density Filamentary Reinforcing Agents, Handbook of Composites, ed. G. Lubin, Van Nostrand Reinhold, 1982, pp.69-76.

DOI: 10.1007/978-1-4615-7139-1_10

Google Scholar

[2] S. Nourbakhsh and H. Margolin, in: Proc. of Metal & Ceramic Matrix Composites: Processing, Modeling and Mechanical Behavior (1990).

Google Scholar

[3] M.A. Mittnick: Metal and Ceramic Matrix Composites 605 (1990), in proceedings.

Google Scholar

[4] S.C. Jha, J.A. Forster, A.K. Pandey and R.G. Delagi, Cold Rolled Titanium Aluminide and Titanium Alloy Foils ISIJ International Vol. 31 10 (1991), p.1267.

DOI: 10.2355/isijinternational.31.1267

Google Scholar

[5] Structural Materials Handbook, Vol. 2: new advanced materials(section XI), ed. European Space Agency, (1994).

Google Scholar

[6] T.W. Clyne: 3. 7. 12. Metal Matrix Composites: Matrices and Processing, Encyclopaedia of Materials: Science and Technology, §3. 7, Composites: MMC, CMC, PMC, ed. A Mortensen, Elsevier, 2001, 1-14.

Google Scholar

[7] D. Upadhyaya: A Comparison of SCS-6/Ti-6Al-4V and Sigma SM1240/Ti-6Al-4V Composite System: a Microstructural Characterization, Recent Advances in Titanium Metal Matrix composites, ed. F. H. Froes and J. Storer. Warrendale, PA: TMS The Minerals, Metals & Materials Society 139, 1995, 139-145.

DOI: 10.4028/www.scientific.net/amr.32.115

Google Scholar

[8] R. Viotto, F. A. Fossati, E. D'Aversa, M. Marchetti G. Marino C. Testani: ENABLING TECHNOLOGIES FOR HOT STRUCTURES OF NEXT GENERATION RLV'S - THE ASA PROGRAM SUMMARY, Proc. 61st International Astronautical Congress, Prague, 2010, CZ. IAC-10-C2. 7. 6.

Google Scholar

[9] R. Donnini, S. Kaciulis, A. Mezzi, R. Montanari and C. Testani: Surf. Interface Anal. Vol. 40 (2008), p.277.

DOI: 10.1002/sia.2644

Google Scholar

[10] R. Donnini, S. Kaciulis, A. Mezzi, R. Montanari and C. Testani: Mater. Sci. Forum Vol. 604- 605 (2009), p.331.

DOI: 10.4028/www.scientific.net/msf.604-605.331

Google Scholar

[11] P. Deodati, R. Donnini, R. Montanari, C. Testani and T. Valente: Mater. Sci. Forum Vol. 604- 605 (2009), p.341.

Google Scholar

[12] Method and plant for composit strip manufacturing by mean of diffusion bonding rolling process, Patent 0001371787, 17/05/(2006).

Google Scholar

[13] R. Donnini, S. Kaciulis, A. Mezzi, R. Montanari and C. Testani, N. Ucciardello, Micorstructural characterisation of Ti6Al4V – SiCf composite produced by new roll-bonding process, Adv. Mat. Res., Vols. 89-91 (2010) pp.715-720.

DOI: 10.4028/www.scientific.net/amr.89-91.715

Google Scholar

[14] Di Stefano, M. Marchetti, C. Testani, Fibre-Matrix Interaction in an Intermetallic Matrix Composite, Base Ni3Al, Reinforced with SiC Fibre, Proc. Of ECCM-8, 6-8 June 1998, Napoli, pp.374-379.

Google Scholar

[15] Kao, W.H. and Chang, D.J. Development of SiC Rinforced Titanium Corrugated Structures, Journal of Composites Technology &Research, Vol. 10, N°2, Summer 1988, pp.47-53.

Google Scholar

[16] C. Testani, C. Campolo, M. Fassero, A. Falchero and M. Di Paola, Manufacturing of a 3-D panel in Ti-MMC for innovative aerospace structure" (in italian), Proc. Of 30° Italian AIM Congress, AIM, Vicenza Novembre 2004, Italy.

Google Scholar

[17] C. Testani, F. Ferraro, P. Deodati, R. Donnini, R. Montanari, S. Kaciulis, A. Mezzi, Comparison between Roll Diffusion Bonding and Hot Isostatic Pressing Production Processes of Ti6Al4V-SiCf Metal Matrix Composites", in "Advances in Metal Matrix Composites Materials, Science Forum Volume 678, (2011).

DOI: 10.4028/www.scientific.net/msf.678.145

Google Scholar

[18] C. Testani, F. Ferraro, Development of a low cost Process for manufacturing of Ti-MMC by RDB, Journal Of Materials Engineering and Performance", Vol. 19, (4) June 2010, pp.521-526.

DOI: 10.1007/s11665-010-9620-6

Google Scholar

[19] R. Donnini, S. Kaciulis, A. Mezzi, R. Montanari, C. Testani, "Long-Term Heat Treatments on Ti6Al4V-SiCf Composite. Part I - Microstructural Characterization, Materials Science Forum Vols. 604-605 (2009) pp.331-340.

DOI: 10.4028/www.scientific.net/msf.604-605.331

Google Scholar

[20] X. Liang, H. K. Kim, J. C. Earthman, E. J. Lavernia: Mat. Sci. Eng., A153, pag. 646-653, (1992).

Google Scholar

[21] C.T. Sims, N.S. Stoloff, W.C. Hagel, in High Temperature Materials for Aerospace and Power, , John Whiley an Sons, (1987).

Google Scholar