High Temperature Characteristics of Unidirectionally Solidified Al2O3/GAP Eutectic Composites with a Novel Microstructure

Article Preview

Abstract:

Much attention has been paid to unidirectionally solidified ceramic composites as candidates for high-temperature structural materials. We have recently developed potential ceramic eutectics, which are named Melt Growth Composites (MGC). The Al2O3/GAP(GdAlO3) binary MGC has a novel microstructure, in which continuous networks of single-crystal Al2O3 phases and single-crystal GAP phases interpenetrate without grain boundaries. Chain structure in the Al2O3/GAP binary system is formed due to the frequent branching of both phases resulted in the entangled structure. Therefore, the Al2O3/GAP binary MGC has excellent high-temperature characteristics in the air atmosphere at very high temperatures. In the paper, high temperature strength, thermal stability of microstructure and strength, and fracture toughness of the Al2O3/GAP binary MGC are reported.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

246-251

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. L. Courtright, H. C. Graham, A. P. Katz, and R. J. Kerans: Ultrahigh temperature assessment study-ceramic matrix composites, Materials Directorate, Wright Laboratory, Air Force Materiel Command, Wright-Patterson Air Force Base (1992).

DOI: 10.6028/nbs.ir.75-728

Google Scholar

[2] William B. Hilling: Prospects for Ultrahigh-Temperature Ceramic Composites in Tailoring Multiphase and Composite Ceramics, Edited by Richard E. Tressler, Gray L. Messing, Carlo G. Pantano, and Robert E. Newnham, Plenum Press. Materials Science Research 20, 697-712(1986).

DOI: 10.1007/978-1-4613-2233-7

Google Scholar

[3] Waku, Y., Ohtsubo, H., Nakagawa, N. and Kohtoku, Y.: 1996, J. Mater. Sci., 31 (1996), p.4663.

Google Scholar

[4] Waku, Y., Nakagawa, N., Wakamoto, T., Ohtsubo, H., Shimizu, K., and Kohtoku, Y.: J. Mater. Sci., 33 (1998), p.1217.

DOI: 10.1023/a:1004486303958

Google Scholar

[5] Waku, Y., Nakagawa, N., Wakamoto, T., Ohtsubo, H., Shimizu, K., and Kohtoku, Y.: J. Mater. Sci., 33 (1998), p.4943.

DOI: 10.1023/a:1004486303958

Google Scholar

[6] Waku, Y., Nakagawa, N., Ohtsubo, H., Mitani, A., and Shimizu, K.: J. Mater. Sci., 36 (2001), p.1585.

Google Scholar

[7] Waku, Y., Nakagawa, N., Wakamoto, T., Ohtsubo, H., Shimizu, K., and Kohtoku, Y.: Nature, 389 (1997), p.49.

DOI: 10.1038/37937

Google Scholar

[8] T. Nagira, H. Yasuda, M. Yoshiya, K. Yoshida, K. Uesugi, Y. Waku: Materia Japan, 46 (2007), p.819.

Google Scholar

[9] H. Yasuda, I. Ohnaka, Y. Mizutani, T. Morikawa, S. Takeshima, A. Sugiyama, Y. Waku, A. Tsuchiyama, T. Nakano, K. Uesugi: J. Euro. Ceram Soc., 25 (2005), p.1397.

DOI: 10.1016/j.jeurceramsoc.2005.01.019

Google Scholar

[10] Hideki Ohtsubo, Narihito Nakagawa, Kazutoshi Shimizu, Kohji Shibata, Atsuyuki Mitani, Yoshiharu Waku: Key Engineering Materials, 317-318 (2006) , p.437.

Google Scholar

[11] Narihito Nakagawa, Hideki Ohtsubo and Yoshiharu Waku: Proceedings of the International Conference on High Temperature Ceramic Matrix Composites (HTCMC 5), 5th, Seatltle, WA, United States, Sept. 12-16, 2004 (2005).

Google Scholar

[12] S. Ochiai, Y. Sakai, K. Sato, M. Tanaka, M. Hojo, H. Okuda, Y. Waku, N. Nakagawa, S. Sakata, A. Mitani and T. Takahashi: Journal of the European Ceramic Society, 25 (2005), p.1241.

DOI: 10.1016/j.jeurceramsoc.2005.01.006

Google Scholar

[13] Narihito Nakagawa, Hideki Ohtsubo, Atsuyuki Mitani, Kazutoshi Shimizu and Yoshiharu Waku : ASME TURBO EXPO 2004-Power for Land, Sea & Air, 14-17 June, Viena, Austria.

Google Scholar

[14] H. Awaji and Y. Sakaido: J. Am. Ceram. Soc., 73 (1990), p.3522.

Google Scholar