Influence of Laser Processing on Polycrystalline Silicon Surface

Article Preview

Abstract:

This paper presents technology of multicrystalline silicon solar cells with laser texturisation step. The texturing of polycrystalline silicon surface using Nd:YAG laser makes it possible to increase absorption of the incident solar radiation. Moreover, the additional technological operation consisting in etching in 20 % KOH solution at temperature of 80°C was introduced into technology of the photovoltaic cells manufactured from laser textured wafers allows to remove laser induced defects but cause the texture to flatten out reducing it optical effectiveness. This paper demonstrates, that laser processing is very promising technique for texturing multicrystaline silicon independent on grains crystallographic orientation compared to conventional texturing methods in technology of solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

829-834

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Goetzberger, V.U. Hoffmann: Photovoltaic solar energy generation, Springer - Verlag, Berlin, (2005).

Google Scholar

[2] U. Gangopadhyay, S.K. Dhungel, P.K. Basu, S.K. Dutta, J. Yi: Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication, Solar Energy Materials and Solar Cells, (2007), 91, pp.285-289.

DOI: 10.1016/j.solmat.2006.08.011

Google Scholar

[3] J.A. Rand, P.A. Basore: Light - trapping silicon solar cells: experimental results and analysis, Proceedings of the 22nd IEEE Photovoltaic Specialists Conference, Las Vegas, (1991), p.192.

DOI: 10.1109/pvsc.1991.169207

Google Scholar

[4] P. Panek, M. Lipiński and J. Dutkiewicz: Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells, Journal of Materials Science, Vol. 40, No 6, (2004), pp.1459-1463.

DOI: 10.1007/s10853-005-0583-1

Google Scholar

[5] M. Lipiński, P. Zięba, A. Kamiński: Crystalline silicon solar cells, In foundation of materials design, Research Signpost, (2006), pp.285-308.

Google Scholar

[6] E. Fornies, C. Zaldo, J.M. Albella: Control of random texture of monocrystalline silicon cells by angle-resolved optical reflectance, Solar Energy Materials and Solar Cells, Vol. 87, (2005), pp.583-593.

DOI: 10.1016/j.solmat.2004.07.040

Google Scholar

[7] A. Hamel, A. Chibani: Characterization of texture surface for solar cells, Journal of Applied Science, Vol. 10 (3) (2010), pp.231-234.

DOI: 10.3923/jas.2010.231.234

Google Scholar

[8] Y. Ein-Eli, N. Gordon, D. Starosvetsky: Reduced light reflection of textured multicrystalline silicon via NPD for solar cells applications, Solar Energy Materials & Solar Cells 90, (2006), pp.1764-1772.

DOI: 10.1016/j.solmat.2005.10.024

Google Scholar

[9] L.A. Dobrzański, A. Drygała, K. Gołombek, P. Panek, E. Bielańska, P. Zięba: Laser surface treatment of multicrystalline silicon for enhancing optical properties, Journal of Materials Processing Technology, 201 (2008), pp.291-296.

DOI: 10.1016/j.jmatprotec.2007.11.278

Google Scholar

[10] L.A. Dobrzański, A. Drygała: Laser processing of multicrystalline silicon for texturization of solar cells, Journal of Materials Processing Technology, 191 (2007), pp.228-231.

DOI: 10.1016/j.jmatprotec.2007.03.009

Google Scholar

[11] M. Abbott, P. Cousins, F. Chen, J. Cotter: Laser-induced deffects in crystalline silicon solar cells, Proceedings of the 31st IEEE Photovoltaic Specialist Conference, Orlando, (2005), pp.1241-1244.

DOI: 10.1109/pvsc.2005.1488364

Google Scholar

[12] M. Allmen, A. Blatter: Laser-beam interactions with materials: physical principles and application, Springer Verlag, Berlin, (1998).

Google Scholar

[13] J.C. Miller: Laser Ablation: Principles and Applications, Springer-Verlag, Berlin, (1994).

Google Scholar