Microstructural Investigation on Tungsten for Applications in Future Nuclear Fusion Reactors

Article Preview

Abstract:

Tungsten is a promising armour material for plasma facing components of nuclear fusion reactors. Two materials with different density and purity have been examined by optical microscopy, X-ray diffraction (XRD), instrumented indentation tests (FIMEC) and mechanical spectroscopy. For both the materials yield stress and elastic modulus strictly depend on the residual porosity. Moreover, the material with higher porosity (≈ 9%) is not stable and remarkable modulus variations are observed during heating. The IF spectrum exhibits a relaxation Q-1 peak superimposed to an exponentially increasing background. The peak is a single Debye peak with activation energy H = 74.86 kJ mol-1 and pre-exponential factor τ0 = 1.76 x 10-9 s that has been ascribed to dislocation interaction with intrinsic point defects (autointerstitial and substitutional).

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

835-840

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Bolt, V. Barabash, W. Krauss, J. Linke, R. Neu, S. Suzuki and N. Nyoshida: J. Nucl. Mater. Vol. 329-333 (2004), p.66.

Google Scholar

[2] B. Riccardi, A. Pizzuto, A. Orsini, S. Libera, E. Visca, L. Bertamini, F. Casadei, E. Severini, R. Montanari, R. Vesprini, P. Varone, G. Filacchioni and N. Litunovsky: Fusion Technol. Vol. 1 (1998), p.223.

Google Scholar

[3] R. Montanari, B. Riccardi, R. Volterri and L. Bertamini: Mater. Lett. Vol. 52 (2002), p.100.

Google Scholar

[4] B. Riccardi, R. Montanari, M. Casadei, G. Costanza, G. Filacchioni and A. Moriani: J. Nucl. Mater. Vol. 352 (2006), p.29.

Google Scholar

[5] B. Riccardi and R. Montanari: Mater. Sci. Eng. A, Vol. 381/1-2 (2004), p.281.

Google Scholar

[6] S. Amadori, E.G. Campari, A.L. Fiorini, R. Montanari, L. Pasquini, L. Savini and E. Bonetti: Mater. Sci. Eng. A Vol. 442 (2006), p.543.

DOI: 10.1016/j.msea.2006.02.210

Google Scholar

[7] G.K. Williamson and R.A. Smallman: Phil. Mag. Vol. 1 (1956), p.34.

Google Scholar

[8] J. Kováčik: J. Mater. Sci. Lett. Vol. 18 (1997), p.1007.

Google Scholar

[9] K. K. Phani and S. K. Niyogi: J. Mater. Sci. Vol. 22 (1987), p.257.

Google Scholar

[10] D.C. Lam , F.F. Lange and A.G. Evans: J. Amer. Ceram. Soc. Vol. 77 (1994), p.2113.

Google Scholar

[11] O.B. Bodnar, I.M. Aristova, A.A. Mazilkin, L.N. Pronina, A.N. Chalka and P. Yu. Popov: Phys. Solid State Vol. 48-1 (2006), p.10.

Google Scholar

[12] A.S. Nowick and B.S. Berry, in: Anelastic Relaxation in Crystalline Solids, Academic Press, New York and London (1972), p.225.

Google Scholar

[13] M.S. Blanter, I.S. Golovin, H. Neuhauser and H.R. Sinning, in: Internal Friction in Metallic Materials-A Handbook, Springer Berlin (2007), p.261.

Google Scholar

[14] G. Rieu: Acta Metall. Vol. 26 (1978), p.1.

Google Scholar

[15] R. H. Chambers and J. Schultz: Acta Metall. Vol. 10 (1962), p.466.

Google Scholar

[16] G. Rieu, D. Lenz and K. Lücke: Proc. 5th ICIFUAS, Springer Berlin Heidelberg New York Vol. 2 (1975), p.343.

Google Scholar

[17] H. Schultz, G. Funk, U. Ziebart and R. Bauer: J. Phys. (Colloques) Vol. 46/C10 (1985), p.289.

DOI: 10.1051/jphyscol:19851064

Google Scholar

[18] U. Ziebart and H. Schultz: J. Phys. (Colloques) Vol. 44/C9 (1983), p.691.

Google Scholar