Structural Changes of Liquid Pb-Bi Eutectic Alloy

Article Preview

Abstract:

Liquid Pb–Bi eutectic (LBE) alloy has been selected as coolant and neutron spallation source for the development of MYRRHA, an accelerator driven system (ADS). The alloy has been characterized in liquid state from melting (125 °C) to 750 °C by mechanical spectroscopy, i.e. internal friction (IF) and dynamic modulus measurements. The experiments have been carried out using hollow reeds of austenitic stainless steel filled with Pb-Bi alloy and sealed at the extremities. Dynamic modulus showed a remarkable drop in the range 350-520 °C. In the same temperature range radial distribution functions (RDFs), determined from X-ray diffraction patterns, evidenced variations of the mean distance between the 1st nearest neighbour atoms. The phenomenon has been explained as a structural re-arrangement of atoms in the liquid metal.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

878-883

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Cinotti, B. Giraud and H.A. Abderrahim: J. Nucl. Mater. Vol. 335 (2004), p.148.

Google Scholar

[2] I.S. Hwang, S.H. Jeong, B.G. Park, W.S. Yang, K.Y. Suh and C.H. Kim: Prog. Nucl. Energy Vol. 37 (2000), p.217.

Google Scholar

[3] J. Zhang and N. Li: J. Nucl. Mater. Vol. 373 (2008), p.351.

Google Scholar

[4] T. Mukaiyama, T. Takizuka, M. Mizumoto, Y. Ikeda, T. Ogawa, A. Hasegawa, H. Takada and H. Takano: Prog. Nucl. Energy Vol. 38 (2001), p.107.

Google Scholar

[5] Y. Kurata, M. Futakawa, K. Kikuchi, S. Saito and T. Osugi: J. Nucl. Mater. Vol. 301 (2002), p.28.

Google Scholar

[6] D. Sapundiev, S. Van Dyck and W. Bogaerts: Corros. Sci. Vol. 48 (2006), p.577.

Google Scholar

[7] G. Mueller, G. Schumacher and F. Zimmermann: J. Nucl. Mater. Vol. 278 (2000), p.85.

Google Scholar

[8] J. Van den Bosch, G. Coen, R.W. Bosch and A. Almazouzi: J. Nucl. Mater. Vol. 398 (2010), p.68.

Google Scholar

[9] T. B. Massalski: Binary Alloy Phase Diagram 2, American Society for Metals (1987), p.524.

Google Scholar

[10] F.Q. Zu, Z.G. Zhu, B. Zhang, Y. Feng and J. P. Shui: J. Phys. Condens. Matter Vol. 13 (2001), p.11435.

Google Scholar

[11] S. Amadori, E.G. Campari, A.L. Fiorini, R. Montanari, L. Pasquini, L. Savini and E. Bonetti: Mater. Sci. Eng. A Vol. 442 (2006), p.543.

DOI: 10.1016/j.msea.2006.02.210

Google Scholar

[12] R. Montanari: Int. J. Mater. Prod. Tec. Vol. 20 (2004), p.452.

Google Scholar

[13] R. Montanari and F. Gauzzi: Annals of the New York Academy of Sciences Vol. 1161 (2009), p.407.

Google Scholar

[14] C. Fazio, G. Benamati, C. Martini and G. Palombarini: J. of Nucl. Mater. Vol. 296 (2001), p.243.

Google Scholar

[15] G. Benamati, C. Fazio, H. Piankova and A. Rusanov: J. Nucl. Mater. Vol. 301 (2002), p.23.

Google Scholar

[16] F.Q. Zu, Z.G. Zhu, L.J. Guo, X.B. Qin, H. Yang and W.J. Shan: Phys. Rev. Lett. Vol. 89-12 (2002), p.125505.

Google Scholar

[17] F.Q. Zu, X.F. Li, L.J. Guo, H. Yang, X.B. Qin and Z.G. Zhu: Physics Lett. A Vol. 324 (2004), p.472.

Google Scholar

[18] F.Q. Zu, L.J. Guo, Z.G. Zhu and Y. Feng: Chin. Phys. Lett. Vol. 19 (2002), p.94.

Google Scholar

[19] Yu. Plevachuk, V. Sklyarchuk, S. Eckert and G. Gerbeth: J. Nucl. Mater. Vol. 373 (2008), p.335.

Google Scholar

[20] Q. Li, F.Q. Zu, X.F. Li and Y. Xi: Mod. Phys. Lett. B Vol. 20/4 (2006), p.151.

Google Scholar