High Strain Rate Superplasticity in an Al-Mg-Sc-Zr Alloy Produced by Equal Channel Angular Pressing and Subsequent Cold and Warm Rolling

Article Preview

Abstract:

Superplastic (SP) properties of an Al−5%Mg−0.2%Sc−0.08%Zr alloy subjected to equal channel angular pressing (ECAP) at T=325°C with an effective stain of ~ 8 and subsequent rolling at the same and ambient temperatures were studied. It has been shown that the formation of ultrafine grained (UFG) structure with the grain size of about 1 μm and the volume fraction 0.6-0.7 under ECAP resulted in exceptionally high SP ductilities in a wide temperature - strain rate range. Maximum elongations ~3300% appeared at 475°C and the strain rate () of 5.6×10-2 s-1. Subsequent warm rolling with a total reduction of 86% led to increased to 0.8-0.85 volume fraction of ultrafine grains with no changes in grain size. Cold rolling with reduction of 80%, in contrast, provided a heavily deformed structure with high dislocation density. In spite of the difference in the alloy microstructures, the SP properties in both rolled conditions were close to similar. The both states exhibited SP behavior with maximum elongation of ~ 2800% at 520°C and = 1.4 ×10-2 s-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

223-228

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.A. Filatov, V.I. Yelagin, V.V. Zacharov, New Al-Mg-Sc alloys, Mater. Sci. Eng. A280 (2000) 97-101.

Google Scholar

[2] T.G. Nieh, L.M. Hsiung, J. Wadsworth, R. Kaibyshev, High strain rate superplasticity in a continuously recrystallized Al-6%Mg-0.3%Sc alloy, Acta Mater. 46 (1998) 2789-2880.

DOI: 10.1016/s1359-6454(97)00452-7

Google Scholar

[3] Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, T.G. Langdon, Superplastic forming at high strain rates after severe plastic deformation, Acta Mater. 48 (2000) 3633-3640.

DOI: 10.1016/s1359-6454(00)00182-8

Google Scholar

[4] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon, Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys, Acta Mater. 50 (2002) 553-564.

DOI: 10.1016/s1359-6454(01)00368-8

Google Scholar

[5] F. Musin, R. Kaibyshev, Y. Motohashi, G. Itoh, High strain rate superplasticity in a commercial Al-Mg-Sc alloy, Scripta Mater. 50 (2004) 511-516.

DOI: 10.1016/j.scriptamat.2003.10.021

Google Scholar

[6] V.N. Perevezentsev, M.Y. Shcherban, M.Y. Murashkin, R.Z. Valiev, High-strain-rate superplasticity of nanocrystalline aluminum alloy 1570, Tech. Phys. Letters 33 (2007) 648-650.

DOI: 10.1134/s106378500708007x

Google Scholar

[7] K. Turba, P. Málek, M. Cieslar, Superplasticity in an Al-Mg-Zr-Sc alloy produced by equal-channel angular pressing, Mater. Sci. Eng. A 462 (2007) 91-94.

DOI: 10.1016/j.msea.2006.01.178

Google Scholar

[8] H. Akamatsu, T. Fujinami, Z. Horita, T.G. Langdon, Influence of rolling on the superplastic behavior of an Al-Mg-Sc alloy after ECAP, Scripta Mater. 44 (2001) 759-764.

DOI: 10.1016/s1359-6462(00)00666-7

Google Scholar

[9] M.V. Markushev, On the effectiveness of some methods of severe plastic deformation for bulk nanomaterials processing, Letters on Mater. 1 (2011) 36-42.

Google Scholar

[10] R. Kaibyshev, E. Avtokratova, O. Sitdikov, Mechanical properties of an Al-Mg-Sc alloy subjected to intense plastic straining, Mater. Sci. Forum 638-642 (2010) 1952-1958.

DOI: 10.4028/www.scientific.net/msf.638-642.1952

Google Scholar

[11] O.Sh. Sitdikov, E.V. Avtokratova, R.I. Babicheva, Effect of temperature on the formation of a microstructure upon equal-channel angular pressing of the Al-Mg-Sc 1570 alloy, Phys. Met. Metall. 110 (2010) 153-161.

DOI: 10.1134/s0031918x10080053

Google Scholar

[12] O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, K. Tsuzaki, Y. Watanabe, Microstructure behavior of Al–Mg–Sc alloy processed by ECAP at elevated temperature, Acta Mater. 56 (2008) 821-834.

DOI: 10.1016/j.actamat.2007.10.029

Google Scholar

[13] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, 2004.

Google Scholar

[14] Y.W. Riddle, T.H. Sanders, A study of coarsening, recrystallization, and morphology of microstructure in Al-Sc-(Zr)-(Mg) alloys, Met. Mater. Trans. 35A (2004) 341-350.

DOI: 10.1007/s11661-004-0135-3

Google Scholar

[15] A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, K. Tsuzaki, Continuous recrystallization in austenitic stainless steel after large strain deformation, Acta Mater. 50 (2002) 1547-1557.

DOI: 10.1016/s1359-6454(02)00013-7

Google Scholar