Strengthening Behavior of Bulk Ultra Fine Grained Aluminum Alloys

Article Preview

Abstract:

Billets of aluminum and aluminum alloys have been deformed at room temperature using a die having equal channels of 10 mm diameter intersecting at an inner angle of 120° and outer arc of 60° by equal channel angular pressing (ECAP) to ultra fine grain (UFG) size level, adopting route Bc. Mechanical properties were evaluated by tensile testing and microhardness measurement. Effects of alloying elements on strengthening were explored. The strengths increase rapidly at first few passes and then reach to a saturation level. The improvement in strength at initial passes of ECAP is due to work hardening and subgrain or dislocation cell formation. However, strengthening at large number of passes is due to the grain refinement alone. The rate of strengthening as a function equivalent strain decreases to a minimum. The strengthening level of bulk UFG alloys is about 3.5 to 4.5 times to that of starting materials. The major cause of strengthening is grain refinement apart from solute strengthening. Among Mg, Zn and Ag alloying elements, the strengthening effect is highest for Mg and lowest for Ag. Ductility is regained without affecting the strength after sufficient number of passes when microstructure becomes equiaxed and ultra-fine in size. However, ductility of UFG Al alloys is lower than that of their coarse grained counterpart.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

241-246

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Song,  D. Ponge,  D. Raabe,  J.G. Speer, D.K. Matlock, Mater Sci Eng., A441(2006)1-17

Google Scholar

[2] V. M. Segal, Mater Sci Eng., A386(2004)269-276

Google Scholar

[3] R. Z. Valiev and T. G. Langdon, Prog. Mater. Sci., 51 (2006) 881-981

Google Scholar

[4] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Prog. Mater. Sci., 45 (2000) 103-189

Google Scholar

[5] M. Furukawa, Z. Horita, M. Nemoto, T. G. Langdon, J. Mater. Sci., 36 (2001) 2835-2843

Google Scholar

[6] R. Manna, Ph. D. Thesis "Design and Characterization of Ultra Fine Grained Aluminum and Aluminum Alloys Processed by Equal Channel Angular Pressing", 2008, Banaras Hindu University, Varanasi, India.

Google Scholar

[7] M. A. Meyers, A. Mishra, D. J. Benson, Prog. Mater., Sci. 51 (2006) 427-556

Google Scholar

[8] C. C. Koch, Nanocryst. Mater., 18 (2003) 9-19

Google Scholar

[9] C. C. Koch, Scripta Mater., 49 (2003) 657-662

Google Scholar

[10] R. K. Islamgaliev, N. F. Yunusova, I. N. Savirov, A. V. Sergueeva, R. Z. Valiev, Mater. Sci. Eng., A 319-321 (2001) 877-881

Google Scholar

[11] R. Z. Valiev, I. V. Alexandrov, T. C. Lowe, Y. T. Zhu, J. Mater. Res., 17 (2002) 5-8

Google Scholar

[12] J. May, H. W. HöPPEL, M. Göken, Scripta Mater., 53 (2005) 189-194

Google Scholar

[13] F. T. Dalla, R. Lapovok, J. Sandlin, P. F. Thomson, C. H. J. Davies, E. V. Pereloma , Acta Mater., 52 (2004) 4819-4832

DOI: 10.1016/j.actamat.2004.06.040

Google Scholar

[14] N. Krasilnikov, W. Lojkowski, Z Pakiela, R. Z.Valiev, Mater. Sci. Eng., A 397 (2005) 330-337

Google Scholar

[15] R. Z. Valiev, A. V. Sergueeva, A. K. Mukherjee, Scripta Mater., 49 (2003) 669-674

Google Scholar

[16] Y. Wang, M. Chen, F. Zhou, E. Ma, Nature, 419 (2002) 912-914

Google Scholar

[17] R. Z.Valiev, Mater. Sci. Eng, A 234-236 (1997) 59-66

Google Scholar

[18] T. Mukai, M. Kawazoe, and K Higashi, Nanostructured Materials,10(1998)755-765

Google Scholar

[19] Z. Horita, T. Fujinami, M. Nemoto,T. G. Langdon, Metall Mater Trans , 31A(2000)691-701

Google Scholar

[20] M.V. Markushev, M. Yu. Murashkin, P.B. Prangnell, A.Gadolinia and O. A. Maiorova, Nanostructured Materials, 12(1999) 839-842

DOI: 10.1016/s0965-9773(99)00247-0

Google Scholar

[21] Z. Horita, N. Fujinami, M. Nemoto, T. G. Langdon, J. Mater. Proc. Technol.,117(2001)288-292

Google Scholar

[22] W.J. Kim, J.K. Kim, T.Y. Park, S.I. Hong, D.I. Kim, Y.S. Kim, and J.D. Lee, Metall. Mater. Trans , 33A(2002)3155-3164

Google Scholar

[23] Z.C. Wang, P.B. Prangnell, Mater. Sci. Eng., A328 (2002) 87–97

Google Scholar

[24] H. Conrad, Mater. Sci. Eng., A341 (2003) 216-228

Google Scholar

[25] J. Gubicza, N.Q. Chinh, Z. Horita, T.G. Langdon, Mater. Sci. Eng., A 387–389 (2004) 55–59

Google Scholar

[26] R. J. Asaro, S. Suresh, Acta Mater., 53 (2005) 3369–3382

Google Scholar

[27] B. Huarte, C.J. Luis, I. Puertas, J. Le´on, R. Luri, J. Mater. Proces. Technol., 162–163 (2005) 317–326

Google Scholar

[28] I. Gutierrez-Urrutia, M.A. Mu˜noz-Morris, D.G. Morris, Mater. Sci. Eng., A 394 (2005) 399–410

Google Scholar

[29] E.A. El-Danaf, M.S. Soliman, A.A. Almajid, M.M. El-Rayes, Mater. Sci. Eng., A 458 (2007) 226–234

Google Scholar

[30] R. B. Figueiredo, M. Kawasaki, C. Xu, T. G. Langdon, Mater. Sci. Eng., A 493(2008)104-110

Google Scholar

[31] L.J. Zhenga, C.Q. Chena, T.T. Zhoua, P.Y. Liua, M.G. Zengb, Materials Characterization, 49 (2003) 455– 461.

Google Scholar

[32] R. Manna, N. K. Mukhopadhyay, G. V. S. Sastry, Metall. Mater. Trans. A, 39A (2008)1525-1534

Google Scholar

[33] R. Manna, N. K. Mukhopadhyay and G.V. S. Sastry, Proc 30th Risø Intl Sym on Mater Sc:Nanostructured metals-Fundamentals to application, Risø National Laboratory, Denmark, 7-11th Sept, 2009, pp.245-252

Google Scholar

[34] R. Manna, N.K. Mukhopadhyay and G.V.S. Sastry, Proc Intl conf. on Advances in Analytical Techniques and Characterization of Materials, RDCIS, Ranchi, India, 5-7th July, (2011)

Google Scholar

[35] T. C. Schulthess, P. E. A. Turchi, A. Gonis,, T. G. Nieh, Acta Mater. ,46 (1998) 2215-2221

Google Scholar

[36] G. E. Dieter, D. Bacon, Mechanical Metallurgy, McGraw-Hill Book Company, UK, (1988)

Google Scholar

[37] T. H. Courtney, Mechanical Behavior of Materials, McGraw-Hill International Edition, (2000)

Google Scholar

[38] R. Z. Valiev, I. V. Alexandrov, T. C. Lowe, Y. T. Zhu, J. Mater. Res. , 17 (2002) 5-8

Google Scholar