Surface Modification of Steels Using Friction Stir Surfacing

Article Preview

Abstract:

Friction stir surfacing is done to deposit commercial pure Al on medium carbon steel under open atmosphere conditions. Roughness of the substrate, normal load and tool rotation are the variables. Deposition is analysed with respect to continuity, width, composition and phase parameters. Good deposition is observed under a limited set of load and rotation speed. The deposit contains a mixture of steel and aluminium particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

258-263

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, High strain rate super plasticity in a friction stir processed 7075 Al alloy, Scr. Mater. 42 (2000) 163-168.

DOI: 10.1016/s1359-6462(99)00329-2

Google Scholar

[2] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Church, Templesmith, C.J. Dawes: Intl. Patent No. PCT/GB92/02203.

Google Scholar

[3] G.W. Stachowiak, A.W. Batchelor, Engineering Tribology. Third ed., Elsevier, Singapore, 2005.

Google Scholar

[4] Taoki, Zhou, Cui Hua, Zhang, Oxidation and hot corrosion behaviour of HVOF sprayed Nanostructure NiCrC coatings, Trans. Nonferr. Met. Soc. China. 19 (2009) 1151-1160.

DOI: 10.1016/s1003-6326(08)60421-5

Google Scholar

[5] A. Nishimoto, K. Akamatsu, Microstructure and oxidation resistance of Fe3Al coatings on austenitic stainless steel by spark plasma sintering, Plasma Processes and Polymers, 6 (2009) s941-s943.

DOI: 10.1002/ppap.200932407

Google Scholar

[6] Zhou Xiao-Lin, Yao Zheng-Jun, Gu Xue-Dong, Cong Wui, Zhang Ping-Ze, Microstructure and corrosion resistance of Fe-Al intermetallic coatings on 45 steel synthesised by double glow plasma surface alloying technology, Trans. Nonferrous Met. Soc. China, 19 (2009) 143-148.

DOI: 10.1016/s1003-6326(08)60242-3

Google Scholar

[7] E.A. Brandes, G.B. Brook, Smithel's Metals Reference Handbook, 17th ed., Butterworths. 1999.

Google Scholar

[8] L.E. Murr, A review of FSW research on dissimilar and alloy systems, J. Mater. Eng. and Perfor. 19 (2010) 1071-1085.

Google Scholar

[9] R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Recent advances in friction stir welding, Progress in Materials Science, 53 (2008) 980-1023.

DOI: 10.1016/j.pmatsci.2008.05.001

Google Scholar

[10] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mat. Sci and Engg. R. 50 (2005) 1-78.

Google Scholar

[11] Z.Y. Ma, Friction stir processing technology, A review, Met. & Matls. Trans. 39A (2008) 642-658.

Google Scholar

[12] R. Rai, A. De, H.K.D.H. Bhadeshia, T. DebRoy, Review: Friction stir welding tools, Sci. and Techn. of Weld. and Joining, 16 (2011) 325-341.

DOI: 10.1179/1362171811y.0000000023

Google Scholar

[13] Y.J. Chao, X. Qi, W. Tang, Heat Transfer in friction stir welding-Experimental and numerical studies, Trans. of the ASME, 125 (2003) 138-145.

DOI: 10.1115/1.1537741

Google Scholar

[14] S. Cui, Z.W Chen, J.D. Robson, A model relating tool torque and its associated power and specific energy to rotation and forward speeds during friction stir processing, Intl. J. of Machine Tools and Manuf. 50 (2010) 1023-1030.

DOI: 10.1016/j.ijmachtools.2010.09.005

Google Scholar