On the Possibility of Occurrence of Anisotropy in Processing of Cu-CNT Composites by Powder Metallurgical Techniques

Article Preview

Abstract:

Copper - multiwall carbon nanotubes (MWCNT) composite was processed by powder metallurgical processing technique. Pure copper powder and MWCNT were mechanically alloyed by high energy milling to produce Cu-MWCNT composite powder. The composite powder was subsequently consolidated by vacuum hot pressing. Characterization studies were conducted along axial (hot pressing direction) and radial (transverse) directions. Microstructural observations of the processed composite revealed random distribution of MWCNT in axial direction and aligned distribution in radial direction. The structure property correlation was established and it revealed certain degree of anisotropy in mechanical and electrical properties of the composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

285-290

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.J.F. Harris, Int. Mater. Rev. 49 (2004)31-43.

Google Scholar

[2] Y-K Choi, K. Sugimoto, S-M Sing, Y. Gotoh, Y. Ohkoshi, M. Endo, Carbon 43 (2005) 2199–2208.

Google Scholar

[3] S. Wang, R. Liang, B. Wang, C. Zhang, Chem. Phys. Lett. 457 (2008) 371–375.

Google Scholar

[4] S. Rul, F.L. Schlick, E. Capria, Ch. Laurent, A. Peigney, Acta Mater. 52 (2004) 1061–1067.

DOI: 10.1016/j.actamat.2003.10.038

Google Scholar

[5] M. Estili, A. Kawasaki, Scripta Mater. 58 (2008) 906–909.

Google Scholar

[6] T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito, J. Mater. Res. 13 (1998) 2445–2449.

Google Scholar

[7] R. Zhong, H. Cong, P. Hou, Carbon 41 (2003) 848–851.

Google Scholar

[8] S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, S.H. Hong, Adv. Mater. 17 (2005)1377–1381.

Google Scholar

[9] A.M.K. Esawi, K. Morsi, A. Sayed, A. Abdel Gawad, P. Borah, Mater. Sci. Eng. A 508 (2009) 167–173.

Google Scholar

[10] R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Scripta Mater. 53 (2005) 1159–1163.

DOI: 10.1016/j.scriptamat.2005.07.022

Google Scholar

[11] N. Pierard, A. Fonseca, Z. Kenya, I. Willems, G. Van Tendeloo, J.B. Nagy, Chem. Phys. Lett. (2001) 3351–8.

Google Scholar

[12] T. Laha, A. Agarwal, T. McKechnie, S. Seal, Mater. Sci. Eng. A 381 (2004) 249–258.

Google Scholar

[13] C. Kima, B. Lima, B. Kima, U. Shima, S. Ohb, B. Sunga, Synth. Met. 159 (2009) 424–429.

Google Scholar

[14] C.F. Deng, D.Z. Wang, Zhang, A.B. Li, Mater. Sci. Eng. A 444 (2007) 138–145.

Google Scholar

[15] H. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Carbon 47 (2009) 570–577.

Google Scholar

[16] W.M. Daoushb, B.K. Lima, C.B. Moa, D.H. Nama, S.H. Honga, Mater. Sci. Eng. A 513 (2009) 247–253.

Google Scholar

[17] A. K. Shukla, Niraj Nayan, SVS Narayana Murty, VSSC technical report no. VSSC-MME-MMG-02-10/R0 (2010).

Google Scholar