Synthesis and Characterization of In Situ AlN Reinforced Magnesium Matrix Composites

Article Preview

Abstract:

In situ Mg-AlN composite has been synthesized by nitrogen gas bubbling method. The morphology of the particles is found to be hexagonal by SEM. The size of the AlN particles is found to be in the range from nano, submicron to a few microns. XRD analysis of the samples confirms the formation of AlN in the melt. Further, the grain size of the magnesium matrix has been reduced by the presence of AlN particles. Hardness of the composite is significantly increased in the particle rich area due to the presence of hard AlN particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

377-382

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Sklenička, M. Pahutová, K. Kuchařová, M.Svoboda, K.U. Kainer, Creep behaviour of magnesium monolithic alloys and composites, Mater. Sci. Forum, 419-422 (2003), 805-810.

DOI: 10.4028/www.scientific.net/msf.419-422.805

Google Scholar

[2] M. Mabuchi, K. Kubota and K. Higashi, Tensile strength, ductility and fracture of magnesium-silicon alloys, J. Mater. Sci. 31 (1996), 1529-1535.

DOI: 10.1007/bf00357861

Google Scholar

[3] M. Mabuchi, K. Kubota and K. Higashi, Effect of Hot Extrusion on Mechanical Properties of Mg-Si-Al Alloy, Mater. Lett. 19 (1994), 247-250.

DOI: 10.1016/0167-577x(94)90165-1

Google Scholar

[4] T. Choh, M. Kobashi, H. Nakata and H. Kaneda, Fabrication of metal matrix composite by spontaneous infiltration and subsequent in situ reaction processes, Mater. Sci. Forum, 217–222 (1996), 353-358.

DOI: 10.4028/www.scientific.net/msf.217-222.353

Google Scholar

[5] K. Yamada, T. Takahashi and M. Motoyama, EPMA state analysis of formation of TiC during mechanical alloying of Mg, Ti and graphite powder mixture, J. Jpn. Inst. Met., 60 (1996), 100-105.

DOI: 10.2320/jinstmet1952.60.1_100

Google Scholar

[6] M.A. Matin, L. Lu and M. Gupta, Investigation of the reactions between boron and titanium compounds with magnesium, Scr. Mater. 45 (2001), 479-486.

DOI: 10.1016/s1359-6462(01)01059-4

Google Scholar

[7] T.J. Mroz, Aluminum nitride, Am. Ceram. Soc. Bull., 75 (1996), 96-100.

Google Scholar

[8] M.K. Aghajanian, J.P. Biel and R.G. Smith, AlN matrix composites fabricated via an infiltration and reaction approach, J. Am. Cera. Soc., 77 (1994), 1917-1920.

DOI: 10.1111/j.1151-2916.1994.tb07071.x

Google Scholar

[9] Q. Zheng, B. Wu and R. G. Reddy, In situ processing of Al alloy composites, Adv. Mater. Eng. 5 (2003) 167-172.

DOI: 10.1002/adem.200390027

Google Scholar

[10] S.S. Sreeja Kumari, U.T.S. Pillai, B.C. Pai, Synthesis and characterization of in situ Al–AlN composite by nitrogen gas bubbling method, J. Alloys. Compd., 509 (2010) 2503-2509.

DOI: 10.1016/j.jallcom.2010.11.065

Google Scholar

[11] H.M. Fu, M.X. Zhang, D. Qiu, , P.M. Kelly, J.A. Taylor, Grain refinement by AlN particles in Mg-Al based alloys, Journal of Alloys and Compounds, J. Alloys. Compd., 478 (2009) 809-812.

DOI: 10.1016/j.jallcom.2008.12.029

Google Scholar

[12] S.J. Huang, Z.W. Chen, Microstructute of AlN particles reinforced AZ91D Mg based metal matrix composites, Acta Metall. Slovaca, 16 (2010) 246-253.

Google Scholar

[13] JCPDS – International Centre for Diffraction Data, PCPDFWIN 2002, v. 2.3.

Google Scholar

[14] H.Z. Ye, X.Y. Liu, B. Luan, In situ synthesis of AlN in Mg–Al alloys by liquid nitridation, J. Mater. Proc. Tech.166 (2005) 79–85.

DOI: 10.1016/j.jmatprotec.2004.06.033

Google Scholar

[15] T. Fan, C. Zhang, J. Chen, D. Zhang, Thermodynamics and kinetics to alloying addition on in-situ AlN/Mg composites synthesis via displacement reactions in liquid Mg melt, Metall. Mater. Trans., 40 (2009) 2743-2750.

DOI: 10.1007/s11661-009-9966-2

Google Scholar