Treatment Methods for the Remediation of Amines: A Review

Article Preview

Abstract:

Various organic amines, most of which both toxic and carcinogenic, are being used extensively worldwide in the syntheses of azo-dyes, polyurethane, pesticides, nylon and many other nitro-aromatics. However, the uncontrolled discharge of these products, back into the environment, releases many primary or intermediate products with similar or even worse levels of toxicity. Therefore, knowledge of the degradation and complete mineralization of these amines, using best techniques with optimum efficiency, is needed. This review is aimed at summarizing the existing studies used for the degradation of amines, employing techniques, such as; biodegradation, thermal, chemical, electrochemical, photochemical, photocatalytic, sonochemical, sono-photo catalytic and sono-ozonation processes. The reactor design for the large scale degradation with optimum efficacy has also been discussed besides attempting a structural correlation to save the environment from such chemical hazards.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-173

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. G. Tezcanli, N. H. Ince, Degradation and toxicity reduction of textile dyestuff by ultrasound, Ultrason. Sonochem. 10 (2003) 235-240.

DOI: 10.1016/s1350-4177(03)00089-0

Google Scholar

[2] D. Karlsson, M. Skanne, M. Dalene, G. Skarping, Airborne thermal degradation products of polyurethane coatings in car repair shops, J. Environ. Monit. 2(2000) 462-469.

DOI: 10.1039/b004562o

Google Scholar

[3] A. K. De, Y. J. Vos, C. G. Van, T. J. De, M. O. Van, R. W. Frei, R. B. Geerdink , U. A. T. Brinkman, Chromatographic determination of phenylurea herbicides and their corresponding aniline degradation products in environmental samples, J. Chromatogr. 288(1984).

DOI: 10.1016/s0021-9673(01)93682-9

Google Scholar

[4] J. C. Spain, Biodegradation of Nitroaromatic Compounds, Plenum Press, New York, (1995).

Google Scholar

[5] R. Sendon, J. Bustos, J. J. Sanchez, P. Paseiro , M. E. Cirugeda, Validation of a liquid chromatography-mass spectrometry method for determining the migration of primary aromatic amines from cooking utensils and its application to actual samples, Food Additives and Contaminants. 27(1)( 2010) 107-117.

DOI: 10.1080/02652030903225781

Google Scholar

[6] G. Boer, C. Schlett, H. P. Tnier, Substituted anilines: Gas chromatographic determination and behavior during a simulated subsoil passage, Vom Wasser. 80(1993) 59-63.

Google Scholar

[7] E. J. Weber, D. L. Spidle , K. A. Thorn, Covalent binding of aniline to humic substances.I. Kinetic studies, Environ. Sci. Technol. 30(1996) 2755-2763.

DOI: 10.1021/es9509341

Google Scholar

[8] V. Coquart , M. C. Hennion, Trace-Level Monitoring of Chloroanilines in Environmental Waters Using On-Line Trace-Enrichment and Liquid Chromatography with UV and Electrochemical Detection, Chromatogr. 37(1993) 392-398.

DOI: 10.1007/bf02272254

Google Scholar

[9] H. Bornick, V. Hultsch, T. Grischek, D. Lienig , E. Worch, Vom Wasser. 87(1996) 305-326.

Google Scholar

[10] S. Muller, J. Efer, W. Engewald, J. Fresenius, Water pollution screening by large-volume injection of aqueous samples and application to GC/MS analysis of a river Elbe sample, J. Anal. Chem. 357(1997) 558-560.

DOI: 10.1007/s002160050213

Google Scholar

[11] S. Paul, D. Lienig and E. Worch, Vom Wasser. 88(1997) 273-283.

Google Scholar

[12] K. R. Davis, T. W. Schultz, J. N. Dumont, Toxic and teratogenic effects of selected aromatic amines on embryos of the amphibian Xenopus laevis, Arch. Environ. Contamin. Toxicol. 10(3) (1981) 371-391.

DOI: 10.1007/bf01055639

Google Scholar

[13] E. M. Scott, W. B. Jakoby, Soluble gamma-aminobutyricglutamic transaminase from Pseudomonas fluorescens , J. Biol. Chem. 234(1959) 932–936.

DOI: 10.1016/s0021-9258(18)70206-8

Google Scholar

[14] P. Poupin, J. J. Godon, E. Zumstein, N. Truffant , Degradation of morpholine, piperidine and pyrrolidine by microbacteria: evidence for the involvement of a cytochrome P450, Can. J. Microbiol. 45(1999) 209–216.

DOI: 10.1139/w99-002

Google Scholar

[15] R. C. Gupta, S. M. Kaul, O. P. Shukla, Pyrrolidine metabolism and its regulation in Arthrobacter sp., Ind. J. Biophys. 12(1975) 263–268.

Google Scholar

[16] H. S. Bae, W. T. Im, Y. Suwa, J. M. Lee, S. T. Lee, Y. K. Chang , Characterization of diverse heterocyclic amine- degrading denitrifying bacteria from various environments, Arch. Micro. Boil. 191(2009) 329–340.

DOI: 10.1007/s00203-008-0452-9

Google Scholar

[17] N. C. G. Tan, A. L. Van, E. M. Van, P. Slenders, F. X. B. Prenafeta, H. Temmnik, G. Lettinga, A. J. Field, Fate and biodegradability of sulphonated aromatic amines, Biodegr. 16(2005) 527–537.

DOI: 10.1007/s10532-004-6593-x

Google Scholar

[18] T. Schrader, G. Schuffenhauer, B. Sielaff, J. R. Andreesen , High morpholine degradation rates and formation of cytochrome P450 during growth on different cyclic amines by newly isolated Mycobacterium sp. Strain HE5, Microbiol. 146(2000).

DOI: 10.1099/00221287-146-5-1091

Google Scholar

[19] O'Neill, F. R. Hawkes, D. L. Hawkes, N. D. Lourenco, H. M. Pinheiro, W. Delee , Colour in textile effluents – sources, measurements, discharge, contents and simulation: a review, J. Chem. Technol. Biotechnol. 74(1999) 1009–1018.

DOI: 10.1002/(sici)1097-4660(199911)74:11<1009::aid-jctb153>3.0.co;2-n

Google Scholar

[20] H. Chen, H. Xu, T. M. Heinze , Decolorization of water and oil-soluble azo dyes by Lactobacillus acidophilis fermentum , J. Ind. Microbiol. Biotechnol. 36(2009)1459–1466.

DOI: 10.1007/s10295-009-0633-9

Google Scholar

[21] O. D. Olukanni, A. A. Osuntoki, G. O. Gbenle , Decolourization of azo dyes by a strain of Micrococcus isolated from a refuse dump soil, Biotechno. 8(4) (2009) 442–448.

DOI: 10.3923/biotech.2009.442.448

Google Scholar

[22] N. Ali, A. Hameed, M. F. Siddiqui, P. B. Ghumro, S. Ahmed, Application of Aspergillus niger SA1 for the enhanced bioremoval of azo dyes in simulated textile effluent, Afr. J. Biotechnol. 8(16) (2009) 3839–3845.

Google Scholar

[23] R. C. Senan, T. E. Abraham, Bioremediation of textile azo dyes by aerobic bacterial consortium, Biodegr. 15(2004) 275–280.

DOI: 10.1023/b:biod.0000043000.18427.0a

Google Scholar

[24] H. H. Omar, Algal decolorization and degradation of monoazo and diazo dyes, J. Biol. Sci. 11(10) (2008)1310–1316.

DOI: 10.3923/pjbs.2008.1310.1316

Google Scholar

[25] M. A. M. Martins, I. C. Ferreira, I. F. M. Santos, M. J. Queiroz, N. Lima, Biodegradation of bioaccessible textile azo dyes by Phanerochaete chrysosporium, J. Biotechnol. 89(2001) 91–98.

DOI: 10.1016/s0168-1656(01)00318-2

Google Scholar

[26] G. Mezohegyi, A. Fabregat, J. Font, C. Bengoa, F. Stuber, Advanced bioreduction of commercially important azo dyes: modeling and correlation with electrochemical character-istics, Ind. Eng. Chem. Res. 48(2009) 7054–7059.

DOI: 10.1021/ie9003893

Google Scholar

[27] M. Delnavaz, B. Ayati, H. Ganjidoust , Biodegradation of Aromatic Amine Compounds Using Moving Bed Biofilm Reactors , Iran. J. Environ. Health. Sci. Eng. 5(4)( 2008) 243–250.

Google Scholar

[28] C. A. Togo, C. C. Z. Mutambanengwe, C. G. Whiteley, Decolourization and degradation of textile dyes using a sulphate reducing bacteria (SRB) – biodigester microflora co-culture, Afr .J. Biotechnol. 7(2) (2008) 114–121.

Google Scholar

[29] L. Liu, F. B. Li, C. H. Feng, Microbial fuel cell with an azo-dye-feeding cathode, Appl. Microbiol. Technol. 85(2009) 175–183.

DOI: 10.1007/s00253-009-2147-9

Google Scholar

[30] M. M. Wei, R. Stewart, The Mechanisms of permanganate oxidation. VIII. substituted benzylamines. J. Am. Chem. Soc. 88(1966) 1974–(1979).

DOI: 10.1021/ja00961a022

Google Scholar

[31] R. Zamora, E. Gallardo, F. J. Hidalgo, Amine Degradation by 4, 5-Epoxy-2decenal in Model Systems, J. Agric. Food. Chem. 54(2006) 2398–2404.

DOI: 10.1021/jf052757l

Google Scholar

[32] C. T. Ho, Thermal degradation of Maillard aromas, in: R. Ikan (Eds. ), The Maillard reaction: Consequences for the chemical and life sciences, Wiley., Chichester, UK, 1996, p.27–53.

Google Scholar

[33] F. J. Hidalgo, R. Zamera, Strecker-type degradation produced by the lipid oxidation products 4, 5 epoxy-2-alkenals, J. Agri. Food. Chem. 52(2004) 7126–7131.

DOI: 10.1021/jf048883r

Google Scholar

[34] H. Lepaumier, D. Picq, P. L. Carrette, New Amines for CO2 Capture. II. Oxidative Degradation Mechanisms, Ind. Eng. Chem. Res. 48 (2009) 9068–9075.

DOI: 10.1021/ie9004749

Google Scholar

[35] H. Lepaumier, D. Picq, P. L. Carrette , New Amines for CO2 Capture. I. Mechanisms of Amine Degradation in the Presence of CO2, Ind. Eng. Chem. Res. 48 (2009) 9061–9067.

DOI: 10.1021/ie900472x

Google Scholar

[36] W. A. Mitch, I. M. Schreiber, Degradation of Tertiary Alkylamines during Chlorination / Chloramination: Implications for Formation of Aldehydes, Nitriles, Halonitroalkanes, and Nitrosamines, Environ. Sci. Technol. 42(2008) 4811–4817.

DOI: 10.1021/es703017z

Google Scholar

[37] Z. Zhu, J.H. Espenson, Kinetics and mechanism of oxidation of anilines by hydrogen peroxide as catalyzed by methylrhenium trioxide, J. Org. Chem. 60(1995) 1326–1332.

DOI: 10.1021/jo00110a042

Google Scholar

[38] L. Marinescu, M. Molbach, C. Rousseau, M. Bols, Supramolecular Oxidation of Anilines Using Hydrogen Peroxide as Stoichiometric Oxidant, J. Am. Chem. Soc. 127(50) (2005) 17578–17579.

DOI: 10.1021/ja054457q

Google Scholar

[39] L. J. Boux, J. R. Milligan, M. C. Archer , Base-catalyzed decomposition of N-Nitrosobis (2-oxopropyl)amine, Chem. Res. Toxicol. 1(1988) 32–34.

DOI: 10.1021/tx00001a006

Google Scholar

[40] G. W. Meadows, J. J. Kirkland, Low Pressure, Fast Flow Pyrolysis of Methylamines, J. Phys. Chem. 65 (1952) 2139–2143.

DOI: 10.1021/j100829a006

Google Scholar

[41] T. D. Stewart, J. G. Aston, The decomposition of quaternary ammonium hydroxides. alkoxymethyldiethyl-methylammonium hydroxides, J. Am. Chem. Soc. 49(7)(1927)1718–1728.

DOI: 10.1021/ja01406a011

Google Scholar

[42] A. C. Silva, J. S. Pic, G. L. S. A. Jr, M. Dezotti, Ozonation of azo dyes (Orange II and Acid Red 27) in saline media, J. Hazard. Mater. 169(2009) 965–971.

DOI: 10.1016/j.jhazmat.2009.04.051

Google Scholar

[43] A. S. Ozen, V. Aviyente , Modeling the Substituent Effect on the Oxidative Degradation of Azo Dyes, J. Phys. Chem . A . 108(2004) 5990–6000.

DOI: 10.1021/jp037138z

Google Scholar

[44] S. N. Petrova, M. V. Volodarski, S. V. Makarov, L. Z. Li, Oxidation of Azo Dyes with Inorganic Peroxides in the Presence of Cationic Surfactants, Russian. J. Appl. Chem. 81(9)(2008)1573–1577.

DOI: 10.1134/s107042720809019x

Google Scholar

[45] M. Mamian, W. Torres, F. E. Larmat, Electrochemical Degradation of Atrazine in Aqueous Solution at a Platinum Electrode, Portugaliae. Electrochim. Act. 27(3) (2009) 371–379.

DOI: 10.4152/pea.200903371

Google Scholar

[46] M. V. B. Zanoni, N. R. Stradiotto, Electrochemical behaviour of aromatic amines protected by nitrobenzenesulfonyl group, Electroanalysis. 7(4) (2005) 365–369.

DOI: 10.1002/elan.1140070412

Google Scholar

[47] K. K. Barnes, C. K. Mann, Electrochemical oxidation of primary aliphatic amines, J Org. Chem. 32(5) (1967) 1474-1479.

DOI: 10.1021/jo01280a037

Google Scholar

[48] V. Santos, A. Mora˜o, M.J. Pacheco, L. Cir´ıaco, A. Lopes, Electrochemical degradation of azo dyes on BOD: effect of chemical structure and operating conditions on the combustion efficiency, J. Environ. Eng. Manage. 18(3)(2008)193–204.

Google Scholar

[49] M. J. Pacheco, M. L. F. Ciriaco, A. Lopes, I. C. Goncalves, M. R. Nunes, M. I. Pereira, Electrodegradation of Azo Dyes Using the Oxide BaPb0. 9Sb0. 1O3-δ as Anode, Material, Portugaliae. Electrochim. Acta. 24(2006) 273–282.

DOI: 10.4152/pea.200602273

Google Scholar

[50] G. Y. Kim, K. B. Lee, S. H. Cho, J. Shim, S. H. Moon, Electroenzymatic degradation of azo dye using an immobilized peroxidase enzyme, J. Hazad. Mater. B. 126(2005) 183–188.

DOI: 10.1016/j.jhazmat.2005.06.023

Google Scholar

[51] S. V. Mohan, K. K. Prasad, C. N. Rao, P. N. Sarma, Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalysed process, Chemosphere. 58(2005) 1097–1105.

DOI: 10.1016/j.chemosphere.2004.09.070

Google Scholar

[52] S. Nam, P. G. Tratnyek, Reduction of azo dyes with zero-valent iron, Water. Res. 34(6)( 2000) 1837–1845.

DOI: 10.1016/s0043-1354(99)00331-0

Google Scholar

[53] J. Cao, L. Wei, Q. Huang, L. Wang, S. Han , Reducing degradation of azo dye by zero- valent iron in aqueous solution, Chemosphere. 38(3)( 1999) 565–571.

DOI: 10.1016/s0045-6535(98)00201-x

Google Scholar

[54] Y. Chen, C. Hu, X. Hu, J. Qu , Indirect Photodegradation of Amine Drugs in Aqueous Solution under Simultated Sunlight, Environ. Sci. Technol. 43 (2009) 2760–2765.

DOI: 10.1021/es803325j

Google Scholar

[55] S. G. Cohen, G. A. Davis, W. D. K. Clark , Photoreduction of Π, Π* triplets by amines, 2-naphthaldehyde, and 2-acetonaphthone. J. Am. Chem. Soc. 94(1972) 869–874.

DOI: 10.1021/ja00758a027

Google Scholar

[56] S. G. Cohen, A. Parola, G. H. Parsons , Photoreduction by amines, Chem. Rev. 73( 1973) 141–161.

DOI: 10.1021/cr60282a004

Google Scholar

[57] B. Mailhot, S. T. Morlat, P. O. Bussiere, J. L. Gardette , Study of the Degradation of an Epoxy/ Amine Resin, 2 Kinetics and Depth-Profiles, Macromol. Chem. Phys. 206 (2005) 585–591.

DOI: 10.1002/macp.200400394

Google Scholar

[58] H. J. Emeleus, H. S. Taylor, The photochemical decomposition of amines and the photochemical interaction of amines and ethylene, J. Am. Chem. Soc. 53(1931) 3370–3377.

DOI: 10.1021/ja01360a020

Google Scholar

[59] A. A. Baum, L. A. Karnischky, D. J. McLeod, P. H. Kasai, Mercury photo-sensitized oxidation of primary and secondary aliphatic amines, J. Am. Chem. Soc. 95(2)( 1972) 617–618.

DOI: 10.1021/ja00783a067

Google Scholar

[60] I. Gultekin, N. H. Ince , Degradation of Reactive Azo Dyes by UV/H2O2: Impact of Radical Scavengers, J. Environ. Sci. Health A. 39(4)(2004) 1069–1081.

DOI: 10.1081/ese-120028414

Google Scholar

[61] L. G. Devi, S. G. Kumar, K. M. Reddy, C. Munikrishnappa, Photo degradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism, J. Hazard. Mater . 164(2009).

DOI: 10.1016/j.jhazmat.2008.08.017

Google Scholar

[62] R.X. Cai, Y. Kubota, T. Shuin, H. Sakai, K. Hashimoto , A. Fujishima, Induction of Cytotoxicity by Photoexcited TiO2 Particles, Cancer. Res. 52(1992) 2346-2348.

Google Scholar

[63] K. Suzuki , Photocatalytic Purification and Treatment of Water and Air, : D.F. Ollis, H. Al-Ekabi (Eds. ), Elsevier., Amsterdam, (1993).

Google Scholar

[64] K. E. Karakitsou , X. E. Verykios, Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage , J. Phys. Chem. 97(1993) 1184-1189.

DOI: 10.1021/j100108a014

Google Scholar

[65] Pankaj , M. Verma, Sonophotocatalytic behavior of cerium doped salts of Cu(II), Co(II) and Mn(II) in the degradation of phenol, Ind. J. Chem. 48A( 2009) 367-371.

Google Scholar

[66] C. F. Klingshirn, Semiconductor optics, Third ed., Springer, Berlin, (2006).

Google Scholar

[67] J. J. Birtill, P. Ridley, S. Liddle, T. S. Nunney, R. Raval, Degradation of methanol and methylamines to carbon over heated alloy surfaces, Ind. Eng. Chem. Res. 40(2)(2001)553-557.

DOI: 10.1021/ie0005856

Google Scholar

[68] M. B. Uzunova, R. Todorovska, D. Dimitrov, D. Todorovsky, Lanthanide-doped titanium dioxide layers as photocatalysts, Appl. Surfac. Sci. 254(2008) 7296–7302.

DOI: 10.1016/j.apsusc.2008.05.331

Google Scholar

[69] Y. C. Chen, P. Smirniotis, Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound, Ind. Eng. Chem. Res. 41(2002)5958–5965.

DOI: 10.1021/ie020415o

Google Scholar

[70] M.A. Gondal, Z. Seddigi, Laser-induced photo-catalytic removal of phenol using n-type WO3 semiconductor catalyst, Chem. Phys. Lett. 417(2006) 124–127.

DOI: 10.1016/j.cplett.2005.09.115

Google Scholar

[71] H. M. Hossein, M. M. S. Majid, A Photocatalytic Method for the Degradation of Pyrrolidine in water, Iran. J. Chem. Eng. 19(2)( 2000) 84–87.

Google Scholar

[72] V. Augugliaro, C. Baiocchi, A. B. Prevot, E.L. Garcia, V. Loddo, S. Malato, G. Marci, L. Palmisano, M. Pazzi, E. Pramauro, Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation, Chemosphere. 49(2002) 1223–1230.

DOI: 10.1016/s0045-6535(02)00489-7

Google Scholar

[73] C. Zhu, L. Wang, L. Kong, X. Yang, L. Wang, S. Zheng, F. Chen, F. M. Zhi, H. Zong, Photocatalytic degradation of AZO dyes by supported TiO2+UV in aqueous solution, Chemosphere. 41(2000) 303–309.

DOI: 10.1016/s0045-6535(99)00487-7

Google Scholar

[74] W. Z. Tang, Z. Zhang, H. An, M. O. Quintana, D. F. Torres, TiO2/UV Photodegradation of Azo dyes in Aqueous solutions, Environ. Technol. 18(1996) 1–12.

DOI: 10.1080/09593330.1997.9618466

Google Scholar

[75] S. Kaur, V. Singh, TiO2 mediated photocatalytic degradation of Reactive Red 198 by UV irradiation, J. Haz. Mater. 141 (2007) 230-236.

DOI: 10.1016/j.jhazmat.2006.06.123

Google Scholar

[76] V. Mirkhani, S. Tangestaninejad, M. Moghadam, M. H. Habibi, A.V. Rostami, Photocatalytic Degradation of Azo Dyes Catalysed by Ag Doped TiO2 Photocatalyst, J. Iran. Chem. Soc. 6(3) (2009) 578–587.

DOI: 10.1007/bf03246537

Google Scholar

[77] T. Zhang, H. Shi, Q. Yang, X. Liu, C. Hang, Preparation and photocatalytic activity of La and Y co-doped nano TiO2, J. Phys. Conf. Ser. 188 (2009) 012027.

DOI: 10.1088/1742-6596/188/1/012027

Google Scholar

[78] C. H. Liang, F. B. Li, C. S. Liu, J. L. Lu, X. G. Wang, The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of Orange I, Dyes and Pigments. 76 (2008) 477-484.

DOI: 10.1016/j.dyepig.2006.10.006

Google Scholar

[79] A.W. Xu, Y. Gao, H.Q. Liu, Preparation, characterization, and their photocatalytic activities of rare earth doped TiO2 nanoparticles, J. Catal. 207(2002) 151–157.

DOI: 10.1006/jcat.2002.3539

Google Scholar

[80] G. L. Sharipov, R. K. H. Gainetdinov, A. M. Abdrakhmanov, Effect of argon on the multi- bubble sonoluminescence of cerium, terbium and dysprosium trichlorides, Russ. Chem. Bull. 57(9) (2008) 1831–1836.

DOI: 10.1007/s11172-008-0247-9

Google Scholar

[81] L. Vikram, B. N. Sivasankar , New nine coordinated hydrated heavier lanthanide ethyl-diamine tetraacetates containing hydrazinium cation: Crystal structure of N2H5[Dy(EDTA) (H2O)3(H2O)5, Ind. J. Chem. 47A (2008) 25–31.

DOI: 10.14233/ajchem.2013.13059a

Google Scholar

[82] K. Juengsuwattananon, A. Jaroenworaluck, T. Panyathanmaporn, S. Jinawath, Supothina, Effect of water and hydrolysis catalyst on the crystal structure of nanocrystalline TiO2 powders prepared by sol-gel method , Physica. Status. Solidi. A. 204(6) (2007).

DOI: 10.1002/pssa.200675328

Google Scholar

[83] S. Vajnhandl, A. M. L. Marechal, Case study of the sonochemical decolouration of textile azo dye Reactive Black 5, J. Hazard. Mater. 141(2007) 329–335.

DOI: 10.1016/j.jhazmat.2006.07.005

Google Scholar

[84] A. S. Ozen, V. Aviyente, G. G. Tezcanli, N. H. Ince, Experimental and Modeling Approach to Decolorization of Azo Dyes by Ultrasound: Degradation of the Hydrazone Tautomer, J. Phys. Chem A. 109(2005) 3506–3516.

DOI: 10.1021/jp046374m

Google Scholar

[85] O. Kenji, I. Kazuya, Y. Yoshihiro, B. Hiroshi, N. Rokuro, M. Yasuaki , Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes , Ultrason. Sonochem. 12(4) (2005).

DOI: 10.1016/j.ultsonch.2004.01.038

Google Scholar

[86] C. Petrier, M. F. Lamy, A. Francony, A. Benahcene, B. David, N. Renaudin, V. Gondrexon , Sonochemical degradation of phenol in dilute aqueous solutions; comparison of the reaction rates at 20 kHz and 487 kHz , J. Phys. Chem. 98(1994) 10514–10520.

DOI: 10.1021/j100092a021

Google Scholar

[87] I. Hua, M. R. Hoffmann, Optimization of ultrasonic irradiation as an advanced oxidation technology, Environ. Sci . Technol. 31(1997) 2237–2243.

DOI: 10.1021/es960717f

Google Scholar

[88] M. Verma, Pankaj, Sono-photo-catalytic degradation of Amines In water, in: Pankaj, M. Ashokkumar (Eds. ), Theoretical and Experimental Sonochemistry Involving Inorganic Systems, Springer., U.K. 2010, Chapter 12, pp.315-336.

DOI: 10.1007/978-90-481-3887-6_12

Google Scholar

[89] H. Wenrong, P. E. I. Haiyan , Decomposed characteristic of azo dyes by ozonation with ultrasonic enhancement, Chinese. Sci. Bull. 47(12) (2002) 986–989.

DOI: 10.1007/bf02907566

Google Scholar

[90] A. Rehorek, M. Tauber, G, Gubitz , Application of power ultrasound for azo dye degradation, Ultrason. Sonochem. 11(2004) 177–182.

DOI: 10.1016/j.ultsonch.2004.01.030

Google Scholar