Influence of Grain Boundary Mobility on Microstructure Evolution during Recrystallisation

Article Preview

Abstract:

The paper introduces first investigations on how low angle grain boundaries can influence the recrystallisation behaviour of crystalline metallic materials. For this purpose a three-dimensional cellular automaton model was used. The approach in this study is to allow even low angle grain boundaries to move during recrystallisation. The effect of this non-zero mobility of low angle grain boundaries will be analysed for the recrystallisation of deformed Al single crystals with Cube orientation. It will be shown that low angle grain boundaries indeed influence the kinetics as well as the texture evolution of metallic materials during recrystallisation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

191-196

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.J. Humphreys: Mater Sc & Techn. Vol. 8 (1992), p.135.

Google Scholar

[2] J. Washburn, and E.R. Parker: Jour. Metals Vol. 4 (1952), p.1076.

Google Scholar

[3] C.H. Li, E.H. Edwards, J. Washburn, and E.R. Parker: Acta Metall. Vol. 1 (1953), p.223.

Google Scholar

[4] M. Winning, G. Gottstein, and L.S. Shvindlerman: Acta Mater. Vol. 49 (2001), p.211.

Google Scholar

[5] M. Winning: Acta Mater. Vol. 50 (2003), p.6465.

Google Scholar

[6] M. Heinrich, and F. Haider: Phil Mag. Vol. 74 (1996), p.1047.

Google Scholar

[7] M. Ferry: Mater. Sci. Forum Vol. 408-412 (2002), p.979.

Google Scholar

[8] Y. Huang, F.J. Humphreys, and M. Ferry: Acta Mater. Vol. 48 (2000), p.2543.

Google Scholar

[9] M. Ferry and F.J. Humphreys: Acta Mater. Vol. 44 (1996), p.1293.

Google Scholar

[10] A.D. Rollett: Prog Mater Sc. Vol. 42 (1997), p.79.

Google Scholar

[11] D. Raabe: Computational Materials Science (Weinheim: Wiley-VCH 1998).

Google Scholar

[12] O. Engler and H.E. Vatne: JOM Vol. 50 (1998), p.23.

Google Scholar

[13] D. Raabe: Adv Eng Mater. Vol. 3 (2001), p.745.

Google Scholar

[14] E.A. Holm and C.C. Battaile: JOM Vol. 53 (2001), p.20.

Google Scholar

[15] D. Raabe, F. Roters, F. Barlat, and L.Q. Chen (Eds. ): Continuum Scale Simulation ofEngineering Materials (Weinheim: WILEY-VCH 2004).

Google Scholar

[16] D. Raabe: Phil Mag. Vol. 79 (1999), p.2339.

Google Scholar

[17] D. Raabe: Ann Rev Mater Res. Vol. 32 (2002), p.53.

Google Scholar

[18] M. Winning and A.D. Rollett: Acta Mater. Vol. 53 (2005), p.2901.

Google Scholar

[19] V.Y. Aristov, V.L. Microchnik and L.S. Shvindlerman: Phys. Solid Sta. Vol. 18 (1976), p.137.

Google Scholar

[20] E.M. Fridman, C.V. Kopetzkii and L.S. Shvindlerman: Zeit Metallk. Vol. 66 (1975), p.533.

Google Scholar

[21] G. Gottstein, and L.S. Shvindlerman: Grain Boundary Migration in Metals: Thermodynamics, Kinetics Applications (Boca Raton Florida: CRC Press LLC 1999).

DOI: 10.1201/9781420054361

Google Scholar

[22] M. Winning, G. Gottstein and L.S. Shvindlerman: Acta Mater. Vol. 50 (2002), p.353.

Google Scholar

[23] M. Winning: Phys Stat Sol (a) Vol. 201 (2004), p.2867.

Google Scholar

[24] J. K. Mackenzie: Biometrika Vol. 45 (1958), p.229.

Google Scholar