The Role of Deformation Microstructure in Recovery and Recrystallization of Heavily Strained Metals

Article Preview

Abstract:

Metals deformed to high and ultrahigh strains are characterized by a nanoscale microstructure, a large fraction of high angle boundaries and a high dislocation density. Another characteristic of such a microstructure is a large stored energy that combines elastic energy due to dislocations and boundary energy. Parameters of the deformed microstructure significantly affect annealing processes such as recovery and recrystallization. For example, the recovery rate can be significantly increased after high strain deformation and restoration may occur as either discontinuous recrystallization or structural coarsening. A characterization and analysis of deformed and annealed microstructures presented in this work covers Al, Ni, Cu and Fe heavily deformed by rolling, accumulative roll bonding (ARB), equal channel angular extrusion (ECAE) and high pressure torsion (HPT). The important effect of recovery on subsequent restoration processes is discussed along with the effect of heterogeneities both on the local scale and on the sample scale.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

251-258

Citation:

Online since:

April 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Hansen: Metall. Mater. Trans A, Vol 32A (2001), p.2917.

Google Scholar

[2] O.V. Mishin, D. Juul Jensen and N. Hansen: Mater. Sci. Eng. A, Vol. A342 (2003), p.320.

Google Scholar

[3] N. Hansen: Mater. Sci. Forum, Vol. 550 (2007), p.169.

Google Scholar

[4] O.V. Mishin and J.R. Bowen: Metall. Mater. Trans A, Vol 40A (2009), p.1684.

Google Scholar

[5] O.V. Mishin, B. Bay, G. Winther and D. Juul Jensen: Acta Mater., Vol. 52 (2004), p.5761.

Google Scholar

[6] X. Huang and G. Winther: Phil. Mag. A, Vol. 87 (2007), p.5189.

Google Scholar

[7] G. Winther and X. Huang: Phil. Mag. A, Vol. 87 (2007), p.5215.

Google Scholar

[8] D.A. Hughes: Aluminium Alloys for Packaging II, D.G. Morris, S.K. Das, and H.S. Goodrich (Eds. ), The Minerals, Metals and Materials Society, Warrendale, PA, USA, (1996), p.129.

Google Scholar

[9] M. Natori, Y. Futamura, T. Tsuchiyama and S. Takaki: Scripta Mater., Vol. 53 (2005), p.603.

Google Scholar

[10] H.S. Chen, A. Godfrey, N. Hansen, J.X. Xie and Q. Liu: Mater. Sci. Eng. A, Vol. A483-484 (2008), p.157.

Google Scholar

[11] Q. Xing, X. Huang and N. Hansen: Metall. Mater. Trans. A, Vol. 37A (2006), p.1311.

Google Scholar

[12] O.V. Mishin and A. Godfrey: Metall. Mater. Trans A, Vol. 39A (2008), p.2923.

Google Scholar

[13] A. Godfrey, O.V. Mishin, J.R. Bowen and Q. Liu, in: 30th Risø International Symposium on Materials Science: Nanostructured metals, Risø, Denmark (2009), p.31.

Google Scholar

[14] N. Hansen, X. Huang, M.G. Møller and A. Godfrey: J Mater. Sci., Vol. 43 (2008), p.6254.

Google Scholar

[15] W.Q. Cao, A. Godfrey, N. Hansen and Q. Liu: Metall. Mater. Trans. A, Vol. 40A (2009), p.204.

Google Scholar

[16] T. Knudsen, W.Q. Cao, A. Godfrey, Q. Liu and N. Hansen: Metall. Mater. Trans A, Vol. 39A (2008), p.430.

Google Scholar

[17] H.W. Zhang, X. Huang, R. Pippan and N. Hansen: Acta Mater., Vol. 58, (2010) p.1698.

Google Scholar

[18] R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQeen and A.D. Rollett: Mater. Sci. Eng. A, Vol. A238 (1997), p.219.

DOI: 10.1016/s1369-7021(98)80046-1

Google Scholar

[19] R.A. Vandermeer and N. Hansen: Acta Mater., Vol. 56 (2008), p.5719.

Google Scholar

[20] T. Yu and N. Hansen: submitted to Mater. Sci. Forum (2010).

Google Scholar

[21] X. Huang, Q. Xing, D. Juul Jensen and N. Hansen: Mater. Sci. Forum, Vol. 519-521 (2006), p.79.

Google Scholar

[22] O.V. Mishin, D. Juul Jensen and N. Hansen: Metall. Mater. Trans A, Vol. 41A (2010), p.2936.

Google Scholar

[23] A. Vorhauer, S. Scheriau and R. Pippan: Metall. Mater. Trans A, Vol. 39A (2008), p.908.

Google Scholar

[24] X. Molodova, G. Gottstein, M. Winning and R.J. Hellmig: Mater. Sci. Eng. A, Vol. A460-461 (2007), p.204.

Google Scholar

[25] D. Terada, B. Li, M. Sugiyama and N. Tsuji: Mater. Sci. Forum, Vol. 558-559 (2007), p.357.

Google Scholar

[26] A. Oscarsson, H-E. Ekström and B. Hutchinson: Mater. Sci. Forum, Vol. 113-115 (1993), p.177.

Google Scholar

[27] H. Jazaeri and F.J. Humphreys: Acta Mater., Vol. 52 (2004), p.3251.

Google Scholar

[28] J.R. Bowen: Ph.D. Thesis. Manchester Materials Science Centre (2000).

Google Scholar

[29] N. Tsuji, N. Kamikawa and Y. Minamino: Mater. Sci. Forum, Vol. 467-470 (2004), p.341.

Google Scholar

[30] P.B. Prangnell, J.R. Bowen, M. Berta, P.J. Apps and P.S. Bate, in: Recrystallization and Grain Growth, Pts 1 and 2. Vol. 467-470 (2004), p.1261.

DOI: 10.4028/www.scientific.net/msf.467-470.1261

Google Scholar

[31] D.G. Morris and M.A. Munoz-Morris: Acta Mater., Vol. 50 (2002), p.4047.

Google Scholar

[32] N. Kamikawa, N. Tsuji, X. Huang and N. Hansen: Acta Mater., Vol. 54 (2006), p.3055.

Google Scholar

[33] H.W. Zhang, X. Huang, R. Pippan and N. Hansen: submitted to Mater. Sci. Forum (2010).

Google Scholar