Stress Induced Grain Boundary Motion in Al Bicrystals

Article Preview

Abstract:

Recent results of experimental research into stress induced grain boundary migration in aluminum bicrystals are briefly reviewed. Boundary migration under a shear stress was observed to be coupled to a lateral translation of the grains for any <100> tilt boundary in the entire misorientation range (0-90°). Measurements of the temperature dependence of coupled boundary migration revealed that there is a specific misorientation dependence of migration activation parameters. Grain boundaries can act during their motion under the applied stress as sources of lattice dislocations that leads to the generation and growth of new grains in the boundary region. The rate of stress induced boundary migration decreases with increasing solute content in aluminum. Both the migration activation enthalpy and the pre-exponential mobility factor were found to increase with rising impurity concentration.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

227-234

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Haslam, D. Moldovan, V. Yamakov, D. Wolf, S. Phillpot and H. Gleiter: Acta Mater. Vol. 51 (2003), p.2112.

DOI: 10.1016/s1359-6454(03)00011-9

Google Scholar

[2] D. Farkas, A. Frøseth and H. Van Swygenhoven: Scripta Mater. Vol. 55 (2006), p.695.

Google Scholar

[3] G. S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven and K. J. Hemker: Acta Mater. Vol 54 (2006), p.2253.

DOI: 10.1016/j.actamat.2006.01.023

Google Scholar

[4] M. Legros, G. S. Gianola and K. J. Hemker: Acta Mater. Vol 56 (2008), p.3380.

Google Scholar

[5] T. J. Rupert, D. S. Gianola, Y. Gan and K. J. Hemker: Science Vol. 326 (2009), p.1686.

Google Scholar

[6] F. Mompiou, D. Caillard and M. Legros: Acta Mater. Vol. 57 (2009), p.2198.

Google Scholar

[7] W.T. Read and W. Shockley: Phys Rev. Vol. 78 (1950), p.275.

Google Scholar

[8] J. Washburn and E. R. Parker: Trans AIME Vol. 194 (1952), p.1076.

Google Scholar

[9] C. H. Li, E. H. Edwards, J. Washburn and E. R. Parker, Acta Metall. Vol. 1 (1953), p.223.

Google Scholar

[10] D. W. Bainbridge, C. H. Li and E. H. Edwards: Acta Metall. Vol. 2 (1954), p.322.

Google Scholar

[11] T. Watanabe, S. I. Kimura and S. Karashima: Philos Mag A Vol. 49 (1984), p.845.

Google Scholar

[12] R. Horiuchi, H. Fukutomi and T. Takahashi: Fundamentals of Diffusion Bonding, Elsevier, Amsterdam (1987), p.347.

Google Scholar

[13] H. Fukutomi and T. Kamijo: Scripta Metall. Vol. 19 (1985), p.195.

Google Scholar

[14] H. Fukutomi, T. Iseki, T. Endo and T. Kamijo: Acta Metall. Mater. Vol. 39 (1991), p.1445.

Google Scholar

[15] A. D. Sheikh-Ali and R. Z. Valiev: Phys Status Solidi (a) Vol. 117 (1990), p.429.

Google Scholar

[16] A. D. Sheikh-Ali, F. F. Lavrentyev and Yu. G. Kazarov: Acta Mater. Vol. 45 (1997), p.4505.

Google Scholar

[17] A. D. Sheikh-Ali and J. A. Szpunar: Mater Sci Eng. Vol. A245 (1998), p.49.

Google Scholar

[18] H. Yoshida, K. Yokoyama, N. Shibata, Y. Ikuhara and T. Sakuma: Acta Mater. Vol. 52 (2004), p.2349.

Google Scholar

[19] C. M. F. Rae and D. A. Smith: Philos. Mag. Vol. A41 (1980), p.477.

Google Scholar

[20] J. P. Hirth, R. C. Pond and J. Lothe: Acta Mater. Vol. 54 (2006), p.4237.

Google Scholar

[21] A. Suzuki and Y. Mishin: Mater Sci Forum Vol. 502 (2005), p.157.

Google Scholar

[22] V. A. Ivanov and Y. Mishin: Phys Rev B Vol. 78 (2008), p.064106.

Google Scholar

[23] H. Zhang, D. Du and D. J. Srolovitz: Philos Mag. Vol. 88 (2008), p.243.

Google Scholar

[24] A. Elsener, O. Politano, P. M. Derlet and H. Van Swygenhoven: Acta Mater. Vol. 57 (2009), p. (1988).

Google Scholar

[25] J. W. Cahn, Y. Mishin and A. Suzuki: Philos. Mag. Vol. 86 (2006), p.3965.

Google Scholar

[26] J. W. Cahn, Y. Mishin and A. Suzuki: Acta Mater. Vol. 54 (2006), p.4953.

Google Scholar

[27] D. Caillard, F. Mompiou and M. Legros: Acta Mater. Vol. 57 (2009), p.2390.

Google Scholar

[28] D. A. Molodov, V. A. Ivanov and G. Gottstein: Acta Mater. Vol. 55 (2007), p.1843.

Google Scholar

[29] D. A. Molodov, T. Gorkaya and G. Gottstein: Mater. Sci. Forum Vols. 558-559 (2007), p.927.

Google Scholar

[30] T. Gorkaya, D. A. Molodov and G. Gottstein: Acta Mater. Vol. 57 (2009), p.5396.

Google Scholar

[31] T. Gorkaya, D. A. Molodov and G. Gottstein: Scripta Mater. Vol. 63 (2010), p.633.

Google Scholar

[32] A. P. Sutton and R. W. Balluffi: Interfaces in crystalline materials, Clarendon Press, Oxford (1995).

Google Scholar

[33] J. W. Cahn and J. E. Taylor: Acta Mater. Vol. 52 (2004), p.4887.

Google Scholar

[34] K. Kurzydlowski, Z. Celinski and M. M. Grabski: Res. Mech. Vol. 1 (1980), p.283.

Google Scholar

[35] Z. Celinski and K. Kurzydlowski: Res. Mech. Vol. 5 (1982), p.89.

Google Scholar

[36] J. P. Hirth and J. Lothe: Theory of dislocations, Wiley, New York (1982).

Google Scholar

[37] R. A. Varin, K. Kurzydlowski and K. Tangri: Mater. Sci, Eng. Vol. 85 (1987), p.115.

Google Scholar

[38] G. Gottstein, D. A. Molodov, U. Czubayko and L. S. Shvindlerman: J. de Phys. IV Vol. 5 (1995), p.89.

Google Scholar

[39] D. A. Molodov, U. Czubayko, G. Gottstein and L. S. Shvindlerman: Acta Mater. Vol. 46 (1998), p.553.

Google Scholar

[40] L. S. Shvindlerman, G. Gottstein and D. A. Molodov: Phys. Status Solidi A Vol. 160 (1997), p.419.

Google Scholar

[41] K. Lücke and K. Detert: Acta Metall. Vol. 5 (1957), p.628.

Google Scholar

[42] J. W. Cahn: Acta Metall. Vol. 10 (1962), p.789.

Google Scholar