Thermodynamic Stabilization of Grain Size in Nanocrystalline Metals

Article Preview

Abstract:

This paper describes the stabilization of nanocrystalline grain sizes in Pd and Fe by the addition of Zr solute atoms. The grain size as a function of annealing temperature was measured by both x-ray diffraction (XRD) line broadening analysis and microscopy methods. The latter methods showed that the XRD grain size measurements for the samples annealed at the higher temperatures were not valid. It appears that thermodynamic stabilization may still be operative in the Fe-4at.% Zr alloy but not in the Pd-19at.% Zr alloy from the experimental results and calculations of the enthalpy of segregation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

323-328

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena (Elsevier Science Inc., Tarrytown, New York 1995) p.289.

Google Scholar

[2] D. A. Porter and K. E. Easterling: Phase Transformations in Metals and Alloys (Chapman and Hall, 2nd edition, London 1992) pp.131-136.

Google Scholar

[3] C. E. Krill III, H. Ehrhardt, and R. Birringer: Z. Metallkd. Vol. 96 (2005) p.1134.

Google Scholar

[4] K. Boylan, D. Ostrander, U. Erb, G. Palumbo, and K. T. Aust : Scripta Metall. Mater. Vol. 25 (1991) p.2711.

Google Scholar

[5] A. Michels, C. E. Krill III, H. Ehrhardt, R. Birringer, and D. T. Wu: Acta Mater. Vol. 47 (1999) p.2143.

Google Scholar

[6] H. J. Hofler and R. S. Averback: Scripta Metall. Mater. Vol 24 (1990) p.2401.

Google Scholar

[7] J. Weissmuller: J. Mater. Res. Vol 9 (1994) p.4.

Google Scholar

[8] R. Kirchheim: Acta Mater. Vol 50 (2002) p.413.

Google Scholar

[9] F. Liu and R. Kirchheim: Scripta Mater. Vol 51 (2004) p.521.

Google Scholar

[10] P. C. Millett, R. P. Selvam, and A. Saxena: Acta Mater. Vol 55 (2007) p.2329.

Google Scholar

[11] D. L. Beke, C. Cserhati, and I. A. Szabo: J. Appl. Phys. Vol 95 (2004) p.4996.

Google Scholar

[12] J. Li, J. Wang, and G. Yang: Scripta Mater. Vol 60 (2009) p.945.

Google Scholar

[13] Z. Chen, F. Liu, H. F. Wang, W. Yang, G. C. Yang, and Y. H. Zhou: Acta Mater. Vol 57 (2009) p.1466.

Google Scholar

[14] K. A. Darling, R. N. Chan, P. Z. Wong, J. E. Semones, R. O. Scattergood, and C. C. Koch: Scripta Mater. Vol 59 (2008) p.530.

Google Scholar

[15] K. A. Darling, B. K. VanLeeuwen, C. C. Koch, and R. O. Scattergood: submitted to Materials Science and Engineering A, (2010).

Google Scholar

[16] F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen: Cohesion in Metals: Transition Metal Alloys. (North-Holland, Amsterdam 1988) p.748.

Google Scholar

[17] P. Wynblatt and D. Chatain: Metall. Mater. Trans. Vol 37A (2006) p.2595.

Google Scholar

[18] B. K. VanLeeuwen, K. A. Darling, C. C. Koch, R. O. Scattergood, and B. Butler: to be published (2010).

Google Scholar

[19] R. Wurschum, K. Reimann, S. Grub, A. Kubler, P. Scharwaechter, W. Frank, O. Kruse, H. D. Carstanjen, and H. -E. Schaefer: Phil. Mag. B, Vol 76 (1997) p.407.

DOI: 10.1080/01418639708241104

Google Scholar

[20] C. H. Moelle and H. J. Fecht: NanoSturctured Mater. Vol 6 (1995) p.421.

Google Scholar

[21] T. R. Malow and C. C. Koch: Acta Mater. Vol 45 (1997) p.2177.

Google Scholar