In Situ Measurements of Magnetically Driven Grain Boundary Migration in Zn Bicrystals

Article Preview

Abstract:

The results of investigations of magnetically driven grain boundary migration in high purity (99.995%) zinc bicrystals are presented. In-situ measurements were conducted by means of a specially designed and fabricated polarization microscopy probe. The migration of planar tilt grain boundaries with various misorientation angles in the range between 60° and 90° was studied. The absolute grain boundary mobility and its temperature dependence was measured in the regime between 330°C and 415°C and the corresponding migration activation parameters were determined. The results revealed that there is a pronounced misorientation dependence of grain boundary mobility in the investigated angular range. The migration activation enthalpy was found to vary between 1.18 eV and 2.15 eV. The obtained activation parameters comply with the compensation law, i.e. the migration activation enthalpy changes linearly with the logarithm of the pre-exponential factor.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

467-472

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. G. Sursaeva, A. V. Andreeva, Ch. V. Kopezkii and L. S. Shvindlerman: Fiz. Met. Metall. Vol. 41 (1976), p.98.

Google Scholar

[2] B. B. Straumal, V. G. Sursaeva and L. S. Shvindlerman: Fiz. Met. Metall. Vol. 49 (1980), p.102.

Google Scholar

[3] V. G. Sursaeva, B. B. Straumal, A. S. Gornakova, L. S. Shvindlerman and G. Gottstein: Acta Mater. Vol. 56 (2008), p.2728.

DOI: 10.1016/j.actamat.2008.02.014

Google Scholar

[4] W. W. Mullins, Acta Metall., Vol. 4 (1956), p.421.

Google Scholar

[5] M. J. Fraser, R. E. Gold and W. W. Mullins: Acta Metall., Vol. 9 (1961), p.960.

Google Scholar

[6] D. A. Molodov, G. Gottstein, F. Heringhaus, L. S. Shvindlerman: Scripta Mater., Vol. 37 (1997), p.1207.

DOI: 10.1016/s1359-6462(97)00227-3

Google Scholar

[7] D. A. Molodov, G. Gottstein, F. Heringhaus, L. S. Shvindlerman: Acta Mater., Vol. 46 (1998), p.5627.

Google Scholar

[8] P. J. Konijnenberg, D. A. Molodov and G. Gottstein: Mater. Sci. Forum Vol. 467-470 (2004), p.763.

Google Scholar

[9] D. A. Molodov: Mater. Sci. Forum Vol. 467-470 (2004), p.697.

Google Scholar

[10] D. A. Molodov and P. J. Konijnenberg: Z. Metallkd. Vol. 96 (2005), p.1158.

Google Scholar

[11] D. A. Molodov and P. J. Konijnenberg: Scripta Mater. Vol. 54 (2006), p.977.

Google Scholar

[12] A. D. Sheikh-Ali, D. A. Molodov and H. Garmestani: Appl. Phys. Lett. Vol. 82 (2003), p.3005.

Google Scholar

[13] A. D. Sheikh-Ali, D. A. Molodov, H. Garmestani: Scripta Mater. Vol. 48 (2003), p.483.

Google Scholar

[14] P. J. Konijnenberg, A. Ziemons, D. A. Molodov and G. Gottstein: Rev. Sci. Instrum. Vol. 79 (2008), p.013701.

Google Scholar

[15] D. A. Molodov, V. A. Ivanov and G. Gottstein: Acta Mater. Vol. 55 (2007), p.1843.

Google Scholar

[16] D. A. Molodov, U. Czubayko, G. Gottstein and L. S. Shvindlerman: Acta Mater., Vol. 46 (1998), p.553.

Google Scholar

[17] G. Gottstein, D. A. Molodov, U. Czubayko and L. S. Shvindlerman: J. de Phys. IV Vol. 5 (1995), p.89.

Google Scholar

[18] L. S. Shvindlerman, G. Gottstein and D. A. Molodov: Phys. Stat. Sol. Vol. 160 (1997), p.419.

Google Scholar

[19] G. Gottstein and L. S. Shvindlerman: Interface Sci. Vol. 6 (1998), p.265.

Google Scholar