[1]
S. Kwofie, Description of cyclic hysteresis behavior based on one-parameter model, Material Science and Engineering, A 357 (2003) 86-93.
DOI: 10.1016/s0921-5093(03)00221-1
Google Scholar
[2]
A. Vandenbrocke, H. Laurent, N. Aït Hocine, G. Rio, A Hyperelasto-Visco-Hysteresis Model for an Electrometric Behavior: Experimental and Numerical Investigation, Computational Materials Science, 48 (2010) 495-503.
DOI: 10.1016/j.commatsci.2010.02.012
Google Scholar
[3]
C. Díaz, P. Martí, M. Victoria, O. M. Querin, Review on Modeling of Joint Behavior in Steel Frames, J. of Computational Steel research, 67 (2011) 741-758.
DOI: 10.1016/j.jcsr.2010.12.014
Google Scholar
[4]
G. Della Corte, G. De Matteis, R. Landolfo, F. M. Mazzolani, Seismic Analysis of MR Steel Frames Based on Refined Hysteretic Models of Connections, J. of Constructional Steel research, 58 (2002) 1331-1345.
DOI: 10.1016/s0143-974x(02)00014-7
Google Scholar
[5]
Bin Chen, Da Gang Yin, Ji Luo, Quan Yuan, Jing Hong Fan, Mechanism of Large Elastic Modulus of Bone, Materials Science Forum, 689 (2011) 390-394.
DOI: 10.4028/www.scientific.net/msf.689.390
Google Scholar
[6]
R. P. B. Dos Reis, C. da Rocha Souto, C. J. de Araújo, A. A. Silva, E. P. Da Silva, Vibration Attenuation in an Epoxy Smart Composite Beam with Embedded NiTi Shape Memory Wire, Materials Science Forum, 643 (2010) 7-13.
DOI: 10.4028/www.scientific.net/msf.643.7
Google Scholar
[7]
M. Nagyová, M. Psotný, J. Ravinger, Stability and Friction, Pollack Periodica, An Int. J. for Eng. and Information Sciences, 5, 3 (2010) 63-70.
DOI: 10.1556/pollack.5.2010.3.6
Google Scholar
[8]
N. Mostaghel, R. A. Byrd, Inversion of Ramberg-Osgood equation and description of hysteresis loss, Int. J. of Non-Linear Mechanics, 37 (2002) 1319-1335.
DOI: 10.1016/s0020-7462(02)00025-2
Google Scholar
[9]
Y. Q. Ni, J. Y. Wang, J. M. Ko, Advanced Method for Modeling Hysteretic Behavior of Semi-Rigid Joints, in Advances in Steel Structures, Ed. by S. L. Chan, J. G. Teng, Elsevier, Vol. I, (1999) 331-338.
DOI: 10.1016/b978-008043015-7/50039-7
Google Scholar
[10]
M. Brokate, J. Sprekels, Hysteresis and Phase Transition, in Applied Mathematical Sciences, Ed. by J.E. Marsden, L. Sirovich, F. John, Vol. 121, Springer, 1996.
Google Scholar
[11]
P. Krejci, Forced periodic vibrations of an elastic system with elastico-plastic damping, Applications of Mathematics, 33 (1988) 145-153.
DOI: 10.21136/am.1988.104295
Google Scholar
[12]
A. Ivanyi: Hysteresis Models in Electromagnetic Computation, Akademiai Kiadó, Budapest, 1997.
Google Scholar
[13]
G. V. Bolshakov, A. J. Lapokov: A Preisach model for magnetoelastic hysteresis, J. of Magnetizm and Magnetic Materials, Vol. 62. (1996) pp.112-116.
Google Scholar
[14]
K. Hirukawa, Sh. Nagata, M. Enokizono, Two-Dimensional Local Vector Magnetic Property Measurements by Use of Simple Transducers, Materials Science Forum, 670 (2010) 60-65.
DOI: 10.4028/www.scientific.net/msf.670.60
Google Scholar
[15]
V. Păltânea, Gh. Paltanea, Study of the Magnetic Anisotropy of the Grain Oriented (GO) and Non-Oriented (NO) Silicon Iron Materials, Materials Science Forum, 670 (2010) 66-73.
DOI: 10.4028/www.scientific.net/msf.670.66
Google Scholar
[16]
A. Ivanyi, P. Ivanyi, M. M. Ivanyi, M. Ivanyi, Hysteresis in Structure Dynamics, in 8th International Symposium on Hysteresis Modeling and Micromagnetics, Ed. by A. Visintin, G. Bertotti, S. Serpico, C. Visone, Levico, Italy, May 9-11. 2011, paper WAO-04.
DOI: 10.1016/j.physb.2011.06.086
Google Scholar
[17]
P. Hagedorn, A. DasGupta, Vibrations and Waves in Continuous Mechanical Systems, John Wiley, 2007.
Google Scholar
[18]
M. Kuczmann, Vector Preisach Hysteresis Modeling, Measurement, Identification and Application, Physica B, Condensed Matter, 406 (2011) 1403-1409.
DOI: 10.1016/j.physb.2011.01.037
Google Scholar