A Periodical Loaded Dynamical System

Article Preview

Abstract:

In the paper a Preisach hysteresis model is applied to determine the dynamic behavior of a steel column with a mass on the top and loaded by periodically alternating force. The column is considered as a completely rigid element, while the fixed end of the column is modeled with a rotational spring with hysteresis characteristic. In the solution of the non-linear dynamical equation of the motion the fix-point technique is inserted to the time marching iteration. The cycling time of the force is changing. The results are plotted in figures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

301-306

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Kwofie, Description of cyclic hysteresis behavior based on one-parameter model, Material Science and Engineering, A 357 (2003) 86-93.

DOI: 10.1016/s0921-5093(03)00221-1

Google Scholar

[2] A. Vandenbrocke, H. Laurent, N. Aït Hocine, G. Rio, A Hyperelasto-Visco-Hysteresis Model for an Electrometric Behavior: Experimental and Numerical Investigation, Computational Materials Science, 48 (2010) 495-503.

DOI: 10.1016/j.commatsci.2010.02.012

Google Scholar

[3] C. Díaz, P. Martí, M. Victoria, O. M. Querin, Review on Modeling of Joint Behavior in Steel Frames, J. of Computational Steel research, 67 (2011) 741-758.

DOI: 10.1016/j.jcsr.2010.12.014

Google Scholar

[4] G. Della Corte, G. De Matteis, R. Landolfo, F. M. Mazzolani, Seismic Analysis of MR Steel Frames Based on Refined Hysteretic Models of Connections, J. of Constructional Steel research, 58 (2002) 1331-1345.

DOI: 10.1016/s0143-974x(02)00014-7

Google Scholar

[5] Bin Chen, Da Gang Yin, Ji Luo, Quan Yuan, Jing Hong Fan, Mechanism of Large Elastic Modulus of Bone, Materials Science Forum, 689 (2011) 390-394.

DOI: 10.4028/www.scientific.net/msf.689.390

Google Scholar

[6] R. P. B. Dos Reis, C. da Rocha Souto, C. J. de Araújo, A. A. Silva, E. P. Da Silva, Vibration Attenuation in an Epoxy Smart Composite Beam with Embedded NiTi Shape Memory Wire, Materials Science Forum, 643 (2010) 7-13.

DOI: 10.4028/www.scientific.net/msf.643.7

Google Scholar

[7] M. Nagyová, M. Psotný, J. Ravinger, Stability and Friction, Pollack Periodica, An Int. J. for Eng. and Information Sciences, 5, 3 (2010) 63-70.

DOI: 10.1556/pollack.5.2010.3.6

Google Scholar

[8] N. Mostaghel, R. A. Byrd, Inversion of Ramberg-Osgood equation and description of hysteresis loss, Int. J. of Non-Linear Mechanics, 37 (2002) 1319-1335.

DOI: 10.1016/s0020-7462(02)00025-2

Google Scholar

[9] Y. Q. Ni, J. Y. Wang, J. M. Ko, Advanced Method for Modeling Hysteretic Behavior of Semi-Rigid Joints, in Advances in Steel Structures, Ed. by S. L. Chan, J. G. Teng, Elsevier, Vol. I, (1999) 331-338.

DOI: 10.1016/b978-008043015-7/50039-7

Google Scholar

[10] M. Brokate, J. Sprekels, Hysteresis and Phase Transition, in Applied Mathematical Sciences, Ed. by J.E. Marsden, L. Sirovich, F. John, Vol. 121, Springer, 1996.

Google Scholar

[11] P. Krejci, Forced periodic vibrations of an elastic system with elastico-plastic damping, Applications of Mathematics, 33 (1988) 145-153.

DOI: 10.21136/am.1988.104295

Google Scholar

[12] A. Ivanyi: Hysteresis Models in Electromagnetic Computation, Akademiai Kiadó, Budapest, 1997.

Google Scholar

[13] G. V. Bolshakov, A. J. Lapokov: A Preisach model for magnetoelastic hysteresis, J. of Magnetizm and Magnetic Materials, Vol. 62. (1996) pp.112-116.

Google Scholar

[14] K. Hirukawa, Sh. Nagata, M. Enokizono, Two-Dimensional Local Vector Magnetic Property Measurements by Use of Simple Transducers, Materials Science Forum, 670 (2010) 60-65.

DOI: 10.4028/www.scientific.net/msf.670.60

Google Scholar

[15] V. Păltânea, Gh. Paltanea, Study of the Magnetic Anisotropy of the Grain Oriented (GO) and Non-Oriented (NO) Silicon Iron Materials, Materials Science Forum, 670 (2010) 66-73.

DOI: 10.4028/www.scientific.net/msf.670.66

Google Scholar

[16] A. Ivanyi, P. Ivanyi, M. M. Ivanyi, M. Ivanyi, Hysteresis in Structure Dynamics, in 8th International Symposium on Hysteresis Modeling and Micromagnetics, Ed. by A. Visintin, G. Bertotti, S. Serpico, C. Visone, Levico, Italy, May 9-11. 2011, paper WAO-04.

DOI: 10.1016/j.physb.2011.06.086

Google Scholar

[17] P. Hagedorn, A. DasGupta, Vibrations and Waves in Continuous Mechanical Systems, John Wiley, 2007.

Google Scholar

[18] M. Kuczmann, Vector Preisach Hysteresis Modeling, Measurement, Identification and Application, Physica B, Condensed Matter, 406 (2011) 1403-1409.

DOI: 10.1016/j.physb.2011.01.037

Google Scholar