Structure and Electrochemical Performance of Modificated LiMn2O4 by S-Co Codoping and Nano SiO2 Surface Coating

Article Preview

Abstract:

In this paper, to improve the elevated temperature performance of spinel LiMn2O4 as cathode materials, the cation/anion co-doping and surface modification together were adopted. The SiO2 coated Li1.02Co0.1Mn1.9O4−xSx spinels were synthesized by the solid-state reaction method and Sol-gel coating process. The samples are characterized by XRD, SEM, galvanostatic charge-discharge. The results show that the Li1.02Co0.1Mn1.9O3.98S0.02 exhibits the best initial discharge capacity of 122mAh/g, and capacity retention rate gets to 92% after 100 cycles at room temperature (25 °C). The substitution of Co and S for Mn and O in LiMn2O4 can enhance the crystal structure stability and overcomes the Jahn-Teller distortion, but cannot resolve the elevated temperature cycling issue of the spinel cathode materials. The capacity loss of Li1.02Co0.1Mn1.9O3.98S0.02 without SiO2 coating gets to 38% after 50 cycles, whereas the 2.0wt.% SiO2-coated Li1.02Co0.1Mn1.9O3.98S0.02 cathode material has only 5.0% capacity loss after 50 cycles at elevated temperature (55°C). It indicates that nano SiO2 coating could suppress Mn dissolution in the electrolyte during cycles. So combining cation/anion co-doping and surface modification is best way to improve the elevated temperature cycling performance of spinel LiMn2O4 as cathode materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-9

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Ohzuka, M. Kitagawa, and T. Hirai. Electrochemistry of manganese dioxide in lithium nonaqueous cell, J. Electrochem. Soc., 137 (1990) 769-775.

DOI: 10.1149/1.2086552

Google Scholar

[2] J. M. Tarascon, E. Wang, F.K. Shokoohi, W.R. Mckinnon, S. Colson. The spinel phase of LiMn2O4 as a cathode in secondary lithium cells, J. Electrochem. Soc., 138 (1991) 2859-2864.

DOI: 10.1149/1.2085330

Google Scholar

[3] S.H. Park, K.S. Park, Y. k. Sun, K.S. Nahm. Synthesis and characterization of a new spinel Li1. 02Al0. 25Mn1. 75O3. 97S0. 03 operating at potentials between 4. 3 and 2. 4 V, J. Electrochem. Soc., 147 (2000) 2116-2121.

DOI: 10.1149/1.1393494

Google Scholar

[4] R.J. Gummow, A. De Kock, and M.M. Thackeray. Improved capacity retention in rechargeable 4V lithium/lithium-manganese oxide(spinel) cells, Solid State Ionics, 69 (1994) 59-67.

DOI: 10.1016/0167-2738(94)90450-2

Google Scholar

[5] M. M. Thackeray. Manganese oxides for lithium batteries, Prog. Solid St. Chem., 25 (1997) 1-71.

Google Scholar

[6] K. raveendranath, J. ravi, R.M. Tomy, S. Jayalekshmi, R.V. Mangalaraja, S.T. Lee, Evidence of Jahn–Teller distortion in LixMn2O4 by thermal diffusivity measurements, Appl. Phys. A90 (2008) 437-440.

DOI: 10.1007/s00339-007-4294-0

Google Scholar

[7] A.D. Roberston, S.H. Lu, W.F. Averill, and W.F. Howard. Admetal effects on morphology and electrochemical performance, J. Electrochem. Soc., 144 (1997) 3500-3505.

DOI: 10.1149/1.1838040

Google Scholar

[8] A.D. Roberston, S.H. Lu, W.F. Howard, Electrochemical stabilization by Cr3+, J. Electrochem. Soc., 144 (1997) 3505-3512.

Google Scholar

[9] K. Amine, H. Tukamoto, H. Yasada, and Y. Fujita. A new three-volt spinel Li1+xMn1. 5Ni0. 5O4 for secondary lithium batteries, J. Electrochem. Soc., 143 (1996) 1607-1613.

DOI: 10.1149/1.1836686

Google Scholar

[10] Li. Guohua, H. Ikuta, T. Uchida, and M. Wakihara. The spinel phases LiMyMn2-yO4(M=Co, Cr, Ni) as the cathode for rechargeable lithium batteries, J. Electrochem. Soc., 143 (1996) 178-182.

DOI: 10.1002/chin.199619011

Google Scholar

[11] Y.P. Wu, E. Rahm, R. Holze. Carbon anode materials for lithium ion batteries, J. Power Sources. 114 (2003) 228-236.

DOI: 10.1016/s0378-7753(02)00596-7

Google Scholar

[12] C. Li, H.P. Zhang, L.J. Fu, and H. Liu et al. Cathode materials modified by surface coating for lithium ion batteries, Electrochimica Acta. 51 (2006) 3872-3883.

DOI: 10.1016/j.electacta.2005.11.015

Google Scholar

[13] S.W. Lee, K.S. Kim, H.S. Moon, H.J. Kim, and B.W. Cho et al. Electrochemical characteristics of Al2O3-coated lithium manganese spinel as a cathode material for a lithium secondary battery, J. Power Sources. 126 (2004) 150–155.

DOI: 10.1016/j.jpowsour.2003.08.032

Google Scholar

[14] J.S. Gnanaraj, V.G. Pol, A. Gedanken, D. Aurbach. Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method, Electrochemistry Communications. 5 (2003) 940–945.

DOI: 10.1016/j.elecom.2003.08.012

Google Scholar

[15] D. Arumugam, G. Paruthimal Kalaignan. Synthesis and electrochemical characterizations of nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries, Journal of Electroanalytical Chemistry. 624 (2008) 197-204.

DOI: 10.1016/j.jelechem.2008.09.007

Google Scholar

[16] G.G. Amatucci, A. Blyr, C. Sigala, P. Alfonse, J.M. Tarascon. Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance, Solid State Ionics. 104 (1997) 13–25.

DOI: 10.1016/s0167-2738(97)00407-4

Google Scholar

[17] Dong H. Jang, and Seung M. Oh. Electrolyte effects on spinel dissolution and cathodic capacity losses in 4V Li/LixMn2O4 rechargeable cells, J. Electrochem. Soc., 144 (1997) 3342-3348.

DOI: 10.1149/1.1838016

Google Scholar

[18] Fabio A. Amaral, Nerilso Bocchi, and Ricardo F. Brocenschi et al. Sturctural and electrochemical properties of the doped spinels Li1. 05M0. 02Mn1. 98O3. 98N0. 02(M=Ga3+, Al3+, or Co3+; N=S2- or F-)for use as cathode material in lithium batteries, J. Power Sources. 195 (2010).

DOI: 10.1016/j.jpowsour.2009.12.002

Google Scholar

[19] D.K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, and C.K. Chan et al. Spinel LiMn2O4 nanorods as lithium ion battery cathodes, Nano Letters. 8 (2008) 3948-3952.

DOI: 10.1021/nl8024328

Google Scholar

[20] S.X. Zhao, X.M. Min, H.X. Liu, Q. Li, S.X. Ouyang. The structural stability of S-M(M=Al, Co) Co-doped spinel LiMn2O4 cathode materials, Acta Phys. -Chim. Sin., 20 (2004) 233-236.

Google Scholar

[21] Zishan Zheng, Zilong Tang, Zhongtai Zhang, Wanci Shen, Yuanhua Lin. Surface modification of Li1. 03Mn1. 97O4 spinels for improved capacity retention, Solid State Ionics. 148 (2002) 317-321.

DOI: 10.1016/s0167-2738(02)00068-1

Google Scholar