The Electromagnetic Properties of Different Urchinlike Ni Nanostructures

Article Preview

Abstract:

Urchinlike Ni particles with different spines were synthesized. The microstructures and morphologies of the resulting materials were investigated by X-ray diffraction and scanning electron microscopy. And the electromagnetic parameters of these urchinlike Ni were measured with vector network analyzer at 2-18 GHz frequency. The results indicate that the electromagnetic parameters are affected by morphologies of materials. The long urchin spines will lead to larger permittivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-51

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Zhang, J. Shi, X. Yang, L. De and X. Wang, Mater. Chem. Phys., 123 (2010), 551.

Google Scholar

[2] C. S. Xiang, Y. B. Pan, X. J. Liu, X. W. Sun, X. M. Shi and J. K. Guo, Appl. Phys. Lett., 87(2005), 123103.

Google Scholar

[3] Z. Li, Y. Deng, B. Shen, L. Liu and W. Hu, J Alloy Compd, 491 (2010), 406.

Google Scholar

[4] S. Pignarda, H. Vincenta, E. Flavinb and F. Boustb, J Magn Magn Mater, 260 (2003), 437.

Google Scholar

[5] R. Han, L. Gong, T. Wang, L. Qiao and F. Li, Mater. Chem. Phys., 131 (2011) 555.

Google Scholar

[6] N. J. Tang, J. F. Wen, Y. Zhang, F. X. Liu, K. J. Lin and Y. W. Du, ACS Nano, 4 (2010), 241.

Google Scholar

[7] M. S. Cao, X. L. Shi, X. Y. Fang, H. B. Jin, Z. L. Hou and W. Zhou, Appl. Phys. Lett., 91 (2007), 203110.

Google Scholar

[8] R. F. Zhuo, H. T. Feng and Q. Liang, J. Phys. D: Appl. Phys., 41 (2008), 185405.

Google Scholar

[9] M. Zhou, X. Zhang, L. Wang, J. Wei, L. Wang, K. Zhu and F. Boxue, Mater. Chem. Phys., 130 (2011), 1191.

Google Scholar

[10] Y. Fan, H. Yang, M. Li and G. Zou, Mater Chem Phys, 115 (2009), 696.

Google Scholar

[11] B. Zhang, Y. Feng, J. Xiong, Y. Yang and H. Lu, IEEE Trans. Magn., 42 (2006), 1778.

Google Scholar

[12] M. Yu, X. Li, R. Gong, Y. He, H. He and P. Lu, Journal Alloys and Compounds, 456 (2008), 455.

Google Scholar

[13] G. Sun, X. Zhang, M. Cao, B. Wei and C. Hu, J. Phys. Chem. C, 113 (2009) 6948.

Google Scholar

[14] R. F. Zhuo, H. T. Feng, J. T. Chen, D. Yan, J. J. Feng, H. J. Li, B. S. Geng, S. Cheng, X. Y. Xu and P. X. Yan, J Phys. Chem. C, 112 (2008), 11767.

Google Scholar

[15] G. X. Tong, W. H. Wua, J. G. Guan, H. S. Qian, J. H. Yuan and W. Li, J. Alloys Compd., 509(2011), 4320.

Google Scholar

[16] F. Ma, J. J. Huang, J. J. Li and Q. Li, J. Nanosci. Nanotech, 9 (2009), 3219.

Google Scholar

[17] B. Gao, L. Qiao, J. Wang, Q. Liu, F. Li, J. Feng and D. Xue, J. Phys. D: Appl. Phys., 41, (2008), 235005.

Google Scholar

[18] K. Peng, L. Zhou, A. Hu, Y. Tang and D. Li, Mater. Chem. Phys., 111 (2008), 34.

Google Scholar

[19] C. Jiang, G. Zou, W. Zhang, W. Yu and Q. Yitai, Mater Lett, 60 (2006), 2319.

Google Scholar