Carbon Nanotube/Polymer Nanocomposites: Improved or Reduced Thermal Stabilities?

Article Preview

Abstract:

The effects of carbon nanotubes (CNTs) on the thermal stability of CNT/polymer nanocomposites are discussed using CNT/silicone composites as a model compound. Pristine CNTs can improve the thermal stability of polymer composites due to the high thermal stability of CNTs, their network structure and free radical scavenging capabilities. However, impurities such as metal catalyst residues and defects such as carboxylic acid functional groups in CNTs can lead to decreased thermal stability of CNT/silicone nanocomposites. Acid purification is an efficient way to remove metallic impurities and can enhance free radical scavenging capabilities. However, controlling the amount of oxidation is important to avoid acid catalyzed thermal degradation induced by carboxylic acid groups on CNT surfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-86

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Ounaies, C. Park, K. E. Wise, E. J. Siochi, J. S. Harrison: Compos Sci Technol. 63 (2003) 1637-46.

Google Scholar

[2] H. Peng: J Am Chem Soc. 130 (2007) 42-3.

Google Scholar

[3] C. Wei, L. Dai, A. Roy, T. B. Tolle: J Am Chem Soc. 128 (2006) 1412-3.

Google Scholar

[4] H. G. Chae, S. Kumar: Science. 319 (2008) 908-9.

Google Scholar

[5] N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, et al.: Nano Lett. 6 (2006) 1141-5.

Google Scholar

[6] C. F. Zhou, S. Kumar, C. D. Doyle, J. M. Tour: Chem Mater. 17 (2005) 1997-(2002).

Google Scholar

[7] A. F. Ismail, P. S. Goh, S. M. Sanip, M. Aziz: Sep Purif Technol. 70 (2009) 12-26.

Google Scholar

[8] H. Huang, C. Liu, Y. Wu, S. Fan: Adv Mater. 17 (2005) 1652-6.

Google Scholar

[9] W. Lin, K. S. Moon, C. P. Wong: Adv Mater. 21 (2009) 2421-4.

Google Scholar

[10] Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. -C. Chung, H. G. Yoon: Carbon. 43 (2005) 23-30.

Google Scholar

[11] J. N. Coleman, U. Khan, W. J. Blau, Y. K. Gun'ko: Carbon. 44 (2006) 1624-52.

Google Scholar

[12] T. Kashiwagi, F. Du, K. I. Winey, K. M. Groth, J. R. Shields, S. P. Bellayer, et al.: Polymer. 46 (2005) 471-81.

Google Scholar

[13] T. Kashiwagi, F. Du, J. F. Douglas, K. I. Winey, R. H. Harris, J. R. Shields: Nat Mater. 4 (2005) 928-33.

Google Scholar

[14] E. Dervishi, Z. R. Li, V. Saini, R. A. Biris, D. Lupu, S. Trigwell, et al.: Mater Res Soc 2007 Spring meeting, Symp EE. Warrendale (Pennsylvania. USA): Materials Research Society, 2007; 1018-EE13-05 (6pp).

Google Scholar

[15] J. Liu, A. Rasheed, M. L. Minus, S. Kumar: J Appl Polym Sci. 112 (2009) 142-56.

Google Scholar

[16] J. Yang, Y. Lin, J. Wang, M. Lai, J. Li, J. Liu, et al.: J Appl Polym Sci. 98 (2005) 1087-91.

Google Scholar

[17] T. Kashiwagi, E. Grulke, J. Hilding, R. Harris, W. Awad, J. Douglas: Macromol Rapid Comm. 23 (2002) 761-5.

DOI: 10.1002/1521-3927(20020901)23:13<761::aid-marc761>3.0.co;2-k

Google Scholar

[18] D. Bikiaris, A. Vassiliou, K. Chrissafis, K. M. Paraskevopoulos, A. Jannakoudakis, A. Docoslis: Polym Degrad Stabil. 93 (2008) 952-67.

Google Scholar

[19] E. T. Thostenson, C. Li, T. -W. Chou: Compos Sci Technol. 65 (2005) 491-516.

Google Scholar

[20] P. C. P. Watts, P. K. Fearon, W. K. Hsu, N. C. Billingham, H. W. Kroto, D. R. M. Walton: J Mater Chem. 13 (2003) 491-5.

Google Scholar

[21] Z. Li, W. Lin, K. -S. Moon, S. J. Wilkins, Y. Yao, K. Watkins, et al.: Carbon. 49 (2011) 4138-48.

Google Scholar

[22] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, et al.: Carbon. 46 (2008) 833-40.

DOI: 10.1016/j.carbon.2008.02.012

Google Scholar

[23] M. Francisco-Marquez, A. Galano, A. MartiÃÅnez: J Phys Chem C. 114 (2010) 6363-70.

Google Scholar

[24] A. Galano: J Phys Chem C. 112 (2008) 8922-7.

Google Scholar

[25] A. Martnez, M. Francisco-Marquez, A. Galano: J Phys Chem C. 114 (2010) 14734-9.

Google Scholar

[26] Y. Zeng, Z. Ying, J. Du, H. -M. Cheng: J Phys Chem C. 111 (2007) 13945-50.

Google Scholar

[27] W. Lin, Y. H. Xiu, H. J. Jiang, R. W. Zhang, O. Hildreth, K. S. Moon, et al.: J Am Chem Soc. 130 (2008) 9636-7.

Google Scholar

[28] H. E. Kissinger: Anal. Chem. 29 (1957) 1702-6.

Google Scholar

[29] G. Camino, S. M. Lomakin, M. Lageard: Polymer. 43 (2002) 2011-5.

Google Scholar

[30] G. Camino, S. M. Lomakin, M. Lazzari: Polymer. 42 (2001) 2395-402.

Google Scholar

[31] A. Goyal, M. Mohl, A. Kumar, R. Puskas, A. Kukovecz, Z. Konya, et al.: Compos Sci Technol. 71 (2011) 129-33.

Google Scholar