Impedance Analysis on the Percolation Mechanism of the Nickel/Calcium Copper Titanate/Polyvinylidene Fluoride Composite

Article Preview

Abstract:

The composites composed of micro-sized calcium copper titanate (CCTO) and nano-sized metallic nickel (Ni) fillers in the polyvinylidene fluoride (PVDF) matrix (Ni/CCTO/PVDF) were prepared, in which the filler content (volume fraction) of Ni and CCTO was set at 60 %. The impedance spectra and a serial equivalent circuit model consisting three RC units were used to investigate the behaviors of the Ni/CCTO/PVDF three-phase composite system near the percolation threshold. The real (Z′) and imaginary (Z″) parts of the impedance dramatically decreased as the Ni content was increased from 22% to 24% indicating a transition from an insulating to a conducting state. This transition process has been realized by the changes in the capacitance derived from the model, and the investigation has been carried out to clarify the release mechanism of the entrapped electrons at the interfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-70

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Kobayashi, T. Tanase, T. Tabata, T. Miwa and M. Konno. J. Eur. Ceram. Soc. 28(2008) 117-123.

Google Scholar

[2] D. H. Lee, J. H. Lee, D.W. Kim, B. K. Kim and H.J. Je. J. Ceram. Soc. Jpn. 118(2010) 62-65.

Google Scholar

[3] S. Firmino Mendes, C.M. Costa, V Sencadas, J. Serrado Nunes, P. Costa, J.R. Gregorio, S. Lanceros-Méndez, Appl. Phys. A 96(2009) 899-908.

DOI: 10.1007/s00339-009-5141-2

Google Scholar

[4] J. Belattar, M.P.F. Graca, L.C. Costa, M.E. Achour, and C. Brosseau. J. Appl. Phys. 107(2010) 124111.

Google Scholar

[5] Y. Zhu , S. Murali , W. Cai , X. Li , J.W. Suk , J.R. Potts and R.S. Ruoff. Adv. Mater. 22(2010) 3906-3924.

DOI: 10.1002/adma.201001068

Google Scholar

[6] R. Andrews, O. Curr. Solid State Mater. Sci. 8(2004) 31-37.

Google Scholar

[7] Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, and Q.Q. Lei. Adv. Mater. 19(2007) 852-857.

Google Scholar

[8] A. Battisti , A.A. Skordos, I.K. Partridge. Compos. Sci. Technol. 70(2010) 633-637.

Google Scholar

[9] M. Panda, V. Srinivas, and A. K. Thakur. Appl. Phys. Lett. 92(2008) 132905.

Google Scholar

[10] B.W. Zhang, B.W. Li, and C.S. Xie . J. Mater. Sci. Technol. 25 (2009) 159-163.

Google Scholar

[11] Y.J. Li, M. Xu, and J.Q. Feng. Appl. Phys. Lett. 89(2006) 072902.

Google Scholar

[12] G.C. Psarrasa, E. Manolakaki, G.M. Tsangaris. Composites: Part A (34)2003 1187-1198.

Google Scholar

[13] S. George, M.T. Sebastian. Compos. Sci. Technol., 69(2009) 1298-1302.

Google Scholar

[14] C.W. Nan, Y. Shen, and J. Ma. Annu. Rev. Mater. Res. 40(2010) 131-151.

Google Scholar

[15] W.B. Lu, T. W. Chou, and E. T. Thostenson. Appl. Phys. Lett. 96(2010) 223106.

Google Scholar

[16] D. Untereker, S. Lyu, J. Schley, G. Martinez and L. Lohstreter. Applied Materials & Interfaces, 1(2009) 97-101.

DOI: 10.1021/am800038z

Google Scholar

[17] Z.M. Dang, S.H. Yao J.K. Yuan, and J.B. Bai. J. Phys. Chem. C 114(2010) 13204-13209.

Google Scholar

[18] J. R. Macdonald. Annals of Biomedical Engineering, 20(1992) 289-305.

Google Scholar

[19] S.P. Mahapatra, V. Sridhar, D.K. Tripathy. Polymer Composites 29(2008) 465-472.

Google Scholar

[20] J. Zhang, M. Mine, D. Zhua, M. Matsuo. Carbon, 47(2009) 1311-1320.

Google Scholar

[21] K.S. Cole. J Gen Physiol, 12 (1928) 29-36.

Google Scholar

[22] L. Nyikos, T. Pajkossy. Electrochim Acta 30(1985) 1533-1540.

Google Scholar

[23] K. Dutta, S.K. De. J. Appl. Phys. 102(2007) 084110.

Google Scholar