Influence of Temperature on the Cyclic Properties of Martensitic Cast Steel

Article Preview

Abstract:

This paper attempts to describe changes of the cyclic properties of martensitic cast steel in the function of the number of loading cycles under temperature of 25 and 600oC was made. The cyclic properties were described by means of three hysteresis loop parameters: stress amplitude, plastic strain amplitude, plastic strain energy. It was stated martensitic cast steel always undergoes clear softening which is independent of the temperature and level of total strain.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-155

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Collins J.A., Failure of Materials in Mechanical Design, Analysis, Prediction, Prevention. John Wiley & Sons, New York 1993.

Google Scholar

[2] Kocańda S., Kocańda A., Niskocyklowa wytrzymałość zmęczeniowa metali. PWN Warszawa 1989.

Google Scholar

[3] Vani Shankar, Valerij Bauer, R. Sandya, M.D. Mathew, H.-J. Christ.: Low Cycle fatigue and thermo-mechanical fatigue behavior of modified 9Cr-1Mo ferritic steel at elevated temperatures, Journal of Nuclear Materials vol. 420 (2012), pp.23-30.

DOI: 10.1016/j.jnucmat.2011.08.048

Google Scholar

[4] Mroziński S., Skocki R., Softening of Martensitic Cast Steel, Journal of Polish CIMAC. Volume 5 No 3, 2011, pp.173-180.

Google Scholar

[5] Mroziński S., Golański G.: Low cycle fatigue of GX12CrMoVNbN9-1 cast steel at elevated temperature. Journal of Achievements in Materials and Manufacturing Engineering. Vol 49 ISSUE 1, November 2011, pp.7-16.

DOI: 10.4028/www.scientific.net/amr.396-398.326

Google Scholar

[6] Nagode M., Hack M.: An online algorithm for temperature influenced fatigue life estimation: stress-life approach, International Journal of Fatigue 26 (2004), pp.163-171.

DOI: 10.1016/s0142-1123(03)00107-5

Google Scholar

[7] Nagode M., Zingsheim M.: An online algorithm for temperature influenced fatigue life estimation: strain-life approach, International Journal of Fatigue 26 (2004), pp.155-161.

DOI: 10.1016/s0142-1123(03)00108-7

Google Scholar

[8] ASTM E606-92: Standard Practice for Strain -Controlled Fatigue Testing.

Google Scholar

[9] Mroziński S., Golański G.: Fatigue life of GX12CrMoVNbN9-1 cast steel in the energy-based approach. Advanced Materials Research. Vol 396-398 (2012), pp.446-449.

DOI: 10.4028/www.scientific.net/amr.396-398.446

Google Scholar

[10] Kaae J.L.: High-temperature low-cycle fatigue of Alloy 800H. International Journal of Fatigue 31 (2009), p.332–340.

DOI: 10.1016/j.ijfatigue.2008.08.002

Google Scholar

[11] Okrajni J., M. Cieśla M., Mutwil K.: Power plant component life assessment, Inżynieria Materiałowa 1 (2005), 15 – 20.

Google Scholar