[1]
Kurek M., Łagoda T., Comparison of fatigue characteristics for some selected structural materials under bending and torsion, Materials Science, Vol. 47, No. 3, November, 2011, pp.334-344.
DOI: 10.1007/s11003-011-9401-x
Google Scholar
[2]
Gough H.J., Some Experiments on the Resistance of Metals to Fatique under Combined Stresses, London: His Majesty's Stationery Office, 1951.
Google Scholar
[3]
Nishihara T, Kawamoto M., The strength of Metals under Combined Alternating Bending and Torsion with Phase Difference. Memoirs of the College of Engineering, Kyoto Imperial University, Vol.X, No. 6, 1941.
Google Scholar
[4]
Lee S.B., A criterion for fully reversed out–of–phase torsion and bending, Multiaxial fatigue ASTM STP 853, Philadelphia1985, p.553–568.
DOI: 10.1520/stp36242s
Google Scholar
[5]
Findley W.N., A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, Journal of Engineering for Industry, 1959pp.301–306.
DOI: 10.1115/1.4008327
Google Scholar
[6]
Carpinteri A., Spagnoli A., Multiaxial high–cycle fatigue criterion for hard metals, Int J Fatigue 23, 2001, p.135–145.
DOI: 10.1016/s0142-1123(00)00075-x
Google Scholar
[7]
Łagoda T., Ogonowski P., Criteria of multiaxial random fatigue based on stress, strain and energy parameters of damage in the critical plane, Mat.-wiss. u. Werkstofftech, Vol.36, No 9, 2005 pp.429-437.
DOI: 10.1002/mawe.200500898
Google Scholar
[8]
Walat K., Kurek M., Ogonowski P., Łagoda T.: The multiaxial random fatigue criteria based on strain and energy damage parameters on the critical plane for the low-cycle range, International Journal of Fatigue, 37, 2012 ss. 100-111
DOI: 10.1016/j.ijfatigue.2011.09.013
Google Scholar
[9]
Walat K., Łagoda T., Application of the covariance on the critical plane for determination of fatigue life under cyclic loading, Procedia Engineering, Vol. 2, 2010, p.1211–1218
DOI: 10.1016/j.proeng.2010.03.131
Google Scholar
[10]
Kohut M., Łagoda T., Trwałość zmęczeniowa elementów wykonywanych z mosiądzu MO58 w warunkach blokowych obciążeń skręcających i zginających, Problemy rozwoju maszyn roboczych Konferencja Naukowa Zakopane, 2007, pp.165-167 (in Polish).
Google Scholar
[11]
Skibicki D. Experimental verification of fatigue loading nonproportionality model, Journal of theoretical and applied mechanics, 2007, 45, 2, 337-348.
Google Scholar
[12]
ASTM E 739-91, Standard practice for statistical analysis of linearized stress–life (S–N) and strain life (e–N) fatigue data, in: Annual Book of ASTM Standards, Vol. 03.01, Philadelphia, 1998, p.614–620.
Google Scholar
[13]
Łagoda T., Sonsino C.M., Comparison of different methods for presenting variable amplitude loading fatigue results, Matt. – wiss. u. Werkstofftech, 2004, 35, No.1 pp.13-19.
DOI: 10.1002/mawe.200300692
Google Scholar