Estimation of Fatigue Life of Materials with Out-of-Parallel Fatigue Characteristics under Block Loading

Article Preview

Abstract:

The paper presents the algorithm of fatigue life estimation for materials with out-of-parallel fatigue characteristics under block loading. Brass CuZn40Pb2, medium-alloy steel 30CrNiMo8 and high-alloy steel 35NCD16 belong to such materials. Brass CuZn40Pb2 was used for analysis. The experimental results were compared with those calculated according to the assumed model, and satisfactory results were obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

181-188

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kurek M., Łagoda T., Comparison of fatigue characteristics for some selected structural materials under bending and torsion, Materials Science, Vol. 47, No. 3, November, 2011, pp.334-344.

DOI: 10.1007/s11003-011-9401-x

Google Scholar

[2] Gough H.J., Some Experiments on the Resistance of Metals to Fatique under Combined Stresses, London: His Majesty's Stationery Office, 1951.

Google Scholar

[3] Nishihara T, Kawamoto M., The strength of Metals under Combined Alternating Bending and Torsion with Phase Difference. Memoirs of the College of Engineering, Kyoto Imperial University, Vol.X, No. 6, 1941.

Google Scholar

[4] Lee S.B., A criterion for fully reversed out–of–phase torsion and bending, Multiaxial fatigue ASTM STP 853, Philadelphia1985, p.553–568.

DOI: 10.1520/stp36242s

Google Scholar

[5] Findley W.N., A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, Journal of Engineering for Industry, 1959pp.301–306.

DOI: 10.1115/1.4008327

Google Scholar

[6] Carpinteri A., Spagnoli A., Multiaxial high–cycle fatigue criterion for hard metals, Int J Fatigue 23, 2001, p.135–145.

DOI: 10.1016/s0142-1123(00)00075-x

Google Scholar

[7] Łagoda T., Ogonowski P., Criteria of multiaxial random fatigue based on stress, strain and energy parameters of damage in the critical plane, Mat.-wiss. u. Werkstofftech, Vol.36, No 9, 2005 pp.429-437.

DOI: 10.1002/mawe.200500898

Google Scholar

[8] Walat K., Kurek M., Ogonowski P., Łagoda T.: The multiaxial random fatigue criteria based on strain and energy damage parameters on the critical plane for the low-cycle range, International Journal of Fatigue, 37, 2012 ss. 100-111

DOI: 10.1016/j.ijfatigue.2011.09.013

Google Scholar

[9] Walat K., Łagoda T., Application of the covariance on the critical plane for determination of fatigue life under cyclic loading, Procedia Engineering, Vol. 2, 2010, p.1211–1218

DOI: 10.1016/j.proeng.2010.03.131

Google Scholar

[10] Kohut M., Łagoda T., Trwałość zmęczeniowa elementów wykonywanych z mosiądzu MO58 w warunkach blokowych obciążeń skręcających i zginających, Problemy rozwoju maszyn roboczych Konferencja Naukowa Zakopane, 2007, pp.165-167 (in Polish).

Google Scholar

[11] Skibicki D. Experimental verification of fatigue loading nonproportionality model, Journal of theoretical and applied mechanics, 2007, 45, 2, 337-348.

Google Scholar

[12] ASTM E 739-91, Standard practice for statistical analysis of linearized stress–life (S–N) and strain life (e–N) fatigue data, in: Annual Book of ASTM Standards, Vol. 03.01, Philadelphia, 1998, p.614–620.

Google Scholar

[13] Łagoda T., Sonsino C.M., Comparison of different methods for presenting variable amplitude loading fatigue results, Matt. – wiss. u. Werkstofftech, 2004, 35, No.1 pp.13-19.

DOI: 10.1002/mawe.200300692

Google Scholar