[1]
H. Zenner, I. Richter, Eine Festigkeitshypothese für die Dauerfestigkeit bei beliebigen Beanspruchungskombinationen, Konstruktion. 29 (1977) 11-18.
Google Scholar
[2]
H. Zenner, R. Heidenreich, I. Richter, Schubspannunsintensitätshypothese – Erweiterung und experimentelle Abstützung einer neuen Festigkeitshypothese für schwingende Beanspruchung, Konstruktion. 32 (1980) 143-152.
Google Scholar
[3]
H. Zenner, A. Simbürger, J. Liu, On the fatigue limit of ductile metals under complex multiaxial loading, International Journal of Fatigue. 22 (2000) 137-145.
DOI: 10.1016/s0142-1123(00)00060-8
Google Scholar
[4]
I. V. Papadopoulos, A high-cycle fatigue criterion applied in biaxial and triaxial out-of-phase stress conditions, Fatigue & Fracture of Engineering Materials & structures. 18 (1995) 79-91.
DOI: 10.1111/j.1460-2695.1995.tb00143.x
Google Scholar
[5]
I. V. Papadopoulos, A new criterion of fatigue strength for out-of-phase bending and torsion of hard metals, Fatigue. 16 (1994) 377-384.
DOI: 10.1016/0142-1123(94)90449-9
Google Scholar
[6]
I. V. Papadopoulos et al., A comparative study of multiaxial high cycle fatigue criteria for metals, International Journal of Fatigue. 19 (1997) 219-235.
DOI: 10.1016/s0142-1123(96)00064-3
Google Scholar
[7]
I. V. Papadopoulos, Long life fatigue under multiaxial loading, International Journal of Fatigue. 23 (2001) 839-849.
DOI: 10.1016/s0142-1123(01)00059-7
Google Scholar
[8]
R. I. Stephens, A. Fatemi, R. R. Stephens, H. O. Fuchs, Metal fatigue in engineering, Willey Interscience, New York, 2001.
Google Scholar
[9]
D. Skibicki, Ł. Pejkowski, Integrals fatigue criteria evaluation for life estimation under uniaxial, combined proportional and non-proportional loadings, Journal of Theoretical and Applied Mechanics. 50 no 4 (2012).
DOI: 10.4028/www.scientific.net/msf.726.189
Google Scholar
[10]
K. Walat, T. Łagoda, Fatigue life of machine elements on the critical plane determined by the stress covariance extremum (in Polish), Oficyna wydawnicza Politechniki Opolskiej, Opole, 2011.
Google Scholar
[11]
E. N. Mamiya, F. C. Castro, R. D. Algarte, J. A. Araujo, Multiaxial fatigue life estimation based on a piecewise ruled S - N surface, International Journal of Fatigue. 33 (2011) 529-540.
DOI: 10.1016/j.ijfatigue.2010.10.007
Google Scholar
[12]
Y. Verreman, H. Guo, High-cycle fatigue mechanisms in 1045 steel under non-proportional axial-torsional loading, Fatigue & Fracture of Engineering Materials & Structures. 30 (2007) 932-946.
DOI: 10.1111/j.1460-2695.2007.01164.x
Google Scholar
[13]
D. L. McDiarmid, Multiaxial fatigue life prediction using a shear stress based critical plane failure criterion, Fatigue design Vol. 1, Technical Research Center of Finland. (1992) 21-33.
DOI: 10.1016/0142-1123(96)81254-0
Google Scholar
[14]
D. Skibicki, J. Sempruch, Ł. Pejkowski, Steel X2CrNiMo17-12-2 Testing for Uniaxial, Proportional and Non-Proportional Loads as delivered and in the Annealed Condition, Materials Science Forum. (2012).
DOI: 10.4028/www.scientific.net/msf.726.171
Google Scholar