Fracture Toughness of Structural Members

Article Preview

Abstract:

Abstract. In the paper several formulae to compute the fracture toughness are presented. The formulae include either parameter characterizing the in-plane constraint or out-of-plane constraint or both. The formulae are based on different assumptions and approaches to fracture mechanics. Namely, small or finite strains were assumed, global or local approach was adopted. In all cases the standard, plain strain fracture toughness was used as a reference state.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-202

Citation:

Online since:

August 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E 1820-05 Standard Test Method for Measurement of Fracture Toughness. ASTM, 2005.

Google Scholar

[2] ASTM (2002), ASTM E 399: Standard Test Method for Plain-Strain Fracture Toughness of Metallic Materials, ASTM International.

DOI: 10.1520/stp33670s

Google Scholar

[3] BS 5762:1979, Method of crack opening displacement (COD) Testing, (1979)

Google Scholar

[4] O'Dowd, N.P., Shih, C.F., "Family of crack-tip fields characterised by a triaxiality parameter-I. Structure of fields", Journal of the Mechanics and Physics of Solids, Tom 39, str. 898-1015 ((1991)

DOI: 10.1016/0022-5096(91)90049-t

Google Scholar

[5] Guo W. Elastoplastic three dimensional crack border field - I. Singular structure of the field. Engineering Fracture Mechanics 1993; 46(1):93-104.

DOI: 10.1016/0013-7944(93)90306-d

Google Scholar

[6] FITNET, Report (European Fitness-for-service Network). Edited by Kocak M., Webster S., Janosch J.J., Ainsworth R.A., Koers R., Contract No. G1RT-CT-2001-05071, (2006)

Google Scholar

[7] SINTAP: Structural Assessment Procedure for European Industry, Final Procedure, 1999, Brite-Euram Project No. BE95-1426, British Steel.

Google Scholar

[8] Ainsworth R.A., "A constraint based failure assessment diagram for fracture assessment". International Journal of Pressure Vessels and Piping, 64, 277-285,(1995)

DOI: 10.1016/0308-0161(95)98949-7

Google Scholar

[9] Sherry, A.H., France C.C., Goldthorpe M.R., "Compendium of T-stress solutions for two and three dimensional cracked geometries", Fatigue and Fracture of Materials and Structures, 1995, Vol. 18, No. 1, str. 141-155.

DOI: 10.1111/j.1460-2695.1995.tb00148.x

Google Scholar

[10] Sherry, A.H., Wilkes M.A., Beardsmore D.W., Lidbury D.P.G. (2005), "Material constraint parameters for the assessment of shallow defects in structural componenets – Part I: Parameter solutions", Engineering Fracture Mechanics, &@, str. 2373-2395

DOI: 10.1016/j.engfracmech.2004.12.009

Google Scholar

[11] Hutchinson, J.W., "Singular behaviour at the end of a tensile crack tip in a hardening material", Journal of the Mechanics and Physics of Solids, Tom 16, str. 13-31 (1968).

DOI: 10.1016/0022-5096(68)90014-8

Google Scholar

[12] Rice, J.R., Rosengren, (1968), G.F., Plane Strain Deformation Near a Crack Tip in a Power-law Hardening Material, Journal of the Mechanics and Physics of Solids, 16, pp.1-12

DOI: 10.1016/0022-5096(68)90013-6

Google Scholar

[13] Graba–Gałkiewicz, http://php.tu.kielce.pl/~pgfm/html/hrr.htm see also: Gałkiewicz J., Graba M., Algorithm for Determination of , , , , Functions in Hutchinson-Rice-Rosengren Solution and its 3d Generalization, Journal of Theoretical and Applied Mechanics, 44, 1:19-30, (2006).

Google Scholar

[14] Neimitz A., Graba W., Analytical-Numerical Hybrid Method to Determine the Stress Field in Front of the Crack in 3D Elastic-Plastic Structural Elements, Proceedings of XVII European Fracture Conference. Brno, Electronic version, Book of Abstracts p.85 (2008)

Google Scholar

[15] O'Dowd N.P. (1995), "Applications of two parameter approaches in elastic-plastic fracture mechanics", Engineering Fracture Mechanics, Vol. 52, No. 3, 445-465.

DOI: 10.1016/0013-7944(95)00033-r

Google Scholar

[16] Neimitz A., Graba, M., Gałkiewicz J. "An alternative formulation of the Ritchie-Knott-Rice local fracture criterion", Engineering Fracture Mechanics, 74, 8, str. 1308-1322, (2007)

DOI: 10.1016/j.engfracmech.2006.07.015

Google Scholar

[17] Ritchie, R.O., Knott, J.F., Rice, J.R., (1973), "On the Relationship Between Tensile Stress and Fracture Toughness in Mild Steels", Journal of the Mechanics and Physics of Solids, 21, pp.395-410.

DOI: 10.1016/0022-5096(73)90008-2

Google Scholar

[18] Neimitz A., Gałkiewicz J., Dzioba I., "The ductile to cleavage transition in ferritic Cr-Mo-V steel: A detailed microscopic and numerical analysis", Engineering Fracture Mechanics, vol.77, pp.2504-2526, (2010)

DOI: 10.1016/j.engfracmech.2010.06.003

Google Scholar

[19] Kumar V., German M.D., Shih C.F., "An Engineering Approach for Elastic-Plastic Fracture Mechanics", Electric Power Research Institute. Palo Alto, Ca (1981) EPRI Report NP-[67](1931)

Google Scholar